
RIoTFuzzer: Companion App Assisted Remote Fuzzing for
Detecting Vulnerabilities in IoT Devices

Kaizheng Liu
Southeast University

Nanjing, Jiangsu, China
kzliu18@seu.edu.cn

Ming Yang
Southeast University

Nanjing, Jiangsu, China
yangming2002@seu.edu.cn

Zhen Ling∗
Southeast University

Nanjing, Jiangsu, China
zhenling@seu.edu.cn

Yue Zhang
Drexel University

Philadelphia, PA, USA
yz899@drexel.edu

Chongqing Lei
Southeast University

Nanjing, Jiangsu, China
leicq@seu.edu.cn

Junzhou Luo
Southeast University

Nanjing, Jiangsu, China
jluo@seu.edu.cn

Xinwen Fu
UMass Lowell

Lowell, MA, USA
xinwen_fu@uml.edu

Abstract

Due to the diversity of architectures and peripherals of Internet
of Things (IoT) systems, blackbox fuzzing stands out as a prime
option for discovering vulnerabilities of IoT devices. Existing black-
box fuzzing tools often rely on companion apps to generate valid
fuzzing packets. However, existing methods encounter the chal-
lenges of bypassing the cloud server side validation when it comes
to fuzz devices that rely on cloud-based communication. Moreover,
they tend to concentrate their efforts on Java components within
Android companion apps, limiting their effectiveness in assessing
non-Java components such as JavaScript-based mini-apps. In this
paper, we introduce a novel blackbox fuzzing method, named RIoT-
Fuzzer, designed to remotely uncover vulnerabilities of IoT devices
with the assistance of companion apps, particularly those powered
by All-in-one Apps with the JavaScript-based mini-apps feature
enabled. Our approach utilizes document-based control command
extraction, hybrid analysis for mutation point identification and
side-channel-guided fuzzing to effectively address the challenges
of fuzzing IoT devices remotely. We apply RIoTFuzzer to 27 IoT de-
vices on prominent platforms and discovered 11 vulnerabilities. All
of them have been acknowledged by the corresponding vendors. 8
have been confirmed by the vendors and have been assigned 4 CVE
IDs. Our experiment results also demonstrate that side-channel-
guided fuzzing can significantly enhance the efficiency of fuzzing
packets sent to IoT devices, with an average increase of 76.62% and
a maximum increase of 362.62%.

CCS Concepts

• Security and privacy→ Software security engineering.

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670342

Keywords

IoT; Fuzzing; LLM for Security; Side Channel; Vulnerability Discov-
ery

ACM Reference Format:

Kaizheng Liu, Ming Yang, Zhen Ling, Yue Zhang, Chongqing Lei, Junzhou
Luo, and Xinwen Fu. 2024. RIoTFuzzer: Companion App Assisted Remote
Fuzzing for Detecting Vulnerabilities in IoT Devices. In Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3658644.3670342

1 Introduction

With the widespread adoption of the Internet of Things (IoT), par-
ticularly in smart homes featuring devices like smart cameras and
bulbs, the global smart home market has experienced significant
growth. The market size reaches $80.21 billion in 2022 and is pro-
jected to soar to $338.28 billion by 2030 [10].

The rapid IoT deployment has also introduced security risks due
to inadequate security measures in the design and implementation
of IoT devices [16–19, 49]. These vulnerabilities often exist within
the firmware of IoT devices, potentially allowing attackers to take
control of these devices. Such compromises can lead to privacy leak-
age for end users [19, 49] and enable Distributed Denial-of-Service
(DDoS) attacks, e.g., a DDoS attack is deployed against Dyn DNS
servers and shut down many web services including Twitter in 2016
[12].

To fight against IoT attacks and assess the security of IoT firmware,
several blackbox fuzzing techniques have been proposed [8, 24].
However, these methods frequently face a common obstacle when
attempting to identify the data format within packets to generate
valid mutated packets so as to improve fuzzing efficiency. While
reverse engineering can overcome this limitation [19], it often re-
quires significant human effort. A common practice is to utilize
companion apps to guide the fuzzing process [4, 25]. For instance,
IoTFuzzer [4] identifies user interface elements responsible for net-
work communication and then applies mutations to user inputs
to generate valid fuzzing packets. DIANE [25], on the other hand,
identifies functions between validation and data transformation at
the app side, thus enabling the construction of valid fuzzing packets.

While IoTFuzzer and DIANE made significant contributions to
the field, they exhibit certain limitations. First, both methods pri-
marily focus on locally fuzzing IoT devices and face difficulties in

2341

https://doi.org/10.1145/3658644.3670342
https://doi.org/10.1145/3658644.3670342
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3670342&domain=pdf&date_stamp=2024-12-09

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Kaizheng Liu et al.

code coverage, particularly for devices that only rely on remote
communication through cloud servers (40% in [1]). Expanding their
capabilities to encompass server-based fuzzing presents a series
of new challenges, including effective crafting of fuzzing packets
capable of evading cloud server validation. Second, these fuzzing
methods primarily target Java components of companion apps,
thereby restricting their effectiveness in assessing non-Java com-
ponents such as JavaScript-based mini-apps within the companion
apps. However, numerous IoT platforms, such as Xiaomi (with 654.5
million connected IoT devices [40]), Jingdong (encompassing more
than 4,000 products from 1,000 brands [44]), Huawei (more than 30
million registered users [13]), and Tuya (supporting 2,700 types of
smart devices globally [32]), offer mini-apps within their compre-
hensive all-in-one apps. That is, the mini-app operates on top of
an All-in-one App (or the host app), and control commands can be
originally sent either directly from the All-in-one App or indirectly
through the mini-app. This flexibility enables IoT device manufac-
turers to create JavaScript-based mini-apps for IoT device control.

Our Approach. To address the limitations of existing methods,
we introduce a novel method called RIoTFuzzer (“R” stands for
the remote side of IoT devices) for blackbox fuzzing IoT devices
remotely, to automatically discover vulnerabilities in IoT firmware.
What sets RIoTFuzzer apart from existing methods is our ability
to achieve genuine remote fuzzing. That is, the fuzzer and the
IoT device are connected to different networks and communicate
through a cloud server. We are also able to identify the appropriate
mutation point for the control command generated by mini-apps.
RIoTFuzzer allows us to uncover vulnerabilities in code related to
the remote control functionality of the All-in-one App powered IoT
platform, a domain that existing methods overlook.

RIoTFuzzer faces three major challenges: (i) RIoTFuzzer is a
blackbox fuzzer and code coverage assessment is a grand challenge.
Previous works [4, 25] indicate that high code coverage can be
achieved by enumerating control commands from the companion
apps. Existing methods such as manual app execution or using
tools like monkeyrunner [14] are time-consuming. (ii) mini-apps
are often obfuscated [45], making it difficult to analyze their control
packets generation. Data transformation can happen in a compan-
ion All-in-one App [25] as well, and pinpointing the correct location
in the companion app (i.e., the All-in-one App level or the mini-app
level) for mutation is crucial to create effective fuzzing packets. (iii)
Remote fuzzing faces the challenge of cloud-side checking, which
may reject fuzzing packets can be rejected if they do not pass server-
side validation. This is very different from traditional local fuzzing
methods. To create fuzzing packets that can reach IoT devices, we
have to comprehend the cloud server’s validation policy. Unfortu-
nately, the cloud server typically operates as a black box, and its
validation policy is not publicly accessible.

We address these challenges in RIoTFuzzer as follows. (i) To
address the challenge of code coverage, we first extract control
commands from the official document using regular expressions
and then manual analysis is used to refine the extractions. These
documents are collected through network synchronization traffic
and the official document search engine. (ii) We employ hybrid app
analysis to identify the appropriate mutation point, which is the
function situated between data encoding and data transferring. This

process involves two phases: the first phase entails static app anal-
ysis and large language model [43] through ChatGPT to identify
candidate Java interface functions. The second phase employs dy-
namic instrumentation to discover the actual mutation point based
on the identified candidate Java interface functions. (iii) We intro-
duce a side-channel method to overcome cloud server validation. By
analyzing the response time, we can infer the validation policy of
the blackbox cloud server. This information guides the construction
of fuzzing packets, enabling them to bypass server-side validation.

We implement the prototype of RIoTFuzzer and apply it to 27
IoT devices from four prominent IoT platforms: Xiaomi, Jingdong,
Huawei, and Tuya. We discovered 11 vulnerabilities across 10 IoT
devices and 8 of them have been confirmed by corresponding ven-
dors. To uncover these vulnerabilities, we only need to send an
average of 113 fuzzing packets, with a maximum of 746. We also
evaluate the side-channel-guided fuzzing approach, revealing a sig-
nificant improvement in effectiveness, with an average increase of
76.62% and a maximum increase of 362.62%. RIoTFuzzer outper-
forms the state-of-the-art blackbox IoT device fuzzer—DIANE [25]
by detecting 11 more vulnerabilities.

Contribution.We make the following major contributions:
• ToolAdvancing Existing IoTArea:We introduceRIoTFuzzer,
the first remote blackbox fuzzer designed to discover vulnera-
bilities in IoT devices though the cloud server. RIoTFuzzer is
capable of handling All-in-one App powered IoT platforms, an
area often overlooked by existing methods.
• Techniques with Domain Insight:We propose the document-
based control command extraction, hybrid analysis-based mu-
tation point identification, and side-channel-guided fuzzing to
effectively construct the fuzzing packets for the IoT device that
can bypass the cloud server-side validation.
• Vulnerabilities with Real-world Impacts:We evaluate RI-
oTFuzzer with 27 IoT devices from 4 popular IoT platforms,
i.e., Xiaomi, Jingdong, Huawei, and Tuya. We have discovered 11
vulnerabilities among 10 IoT devices and all of them have been
acknowledged by the corresponding vendors. 8 of them have
been confirmed and 4 CVE IDs are assigned, i.e., CVE-2024-3764,
CVE-2024-5095, CVE-2024-32268, CVE-2024-32269.

2 Background

This section introduces the IoT system architecture and platforms.

2.1 IoT System Architecture

IoT refers to a network of physical objects or “things” that are
equipped with sensors, software, and connectivity capabilities, al-
lowing them to collect and exchange data with other devices and
systems over the internet or various communication networks. As
depicted in Figure 1, an IoT system can be conceptually divided
into three distinct components: the controller, the IoT device, and
the cloud server.

• Controller: The controller is a device such as a smartphone
that has a companion app installed for a specific IoT applica-
tion and remotely send control commands to the IoT device
via the app to execute specific functions.

2342

RIoTFuzzer: Companion App Assisted Remote Fuzzing for Detecting Vulnerabilities in IoT Devices CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

Cloud server Controller

IoT Devices

Local

Remote

Remote

Figure 1: IoT System Architecture

• IoT device: An IoT device often has hardware sensors and
specific software that can transmit data over the internet or
other networks.
• Cloud server: Acting as a facilitator for communication be-
tween IoT devices and controllers, the cloud server may store
data generated by IoT devices, manage device configurations,
and enables remote access and control.

A controller may control a device locally or remotely. In local
control, both the controller and the IoT device reside within the
same network and the two parts communicate with each other di-
rectly. Remote control relies on the cloud server as an intermediary
to communicate for the controller and the IoT device.

2.2 IoT Platforms

IoT platforms are software solutions or ecosystems designed to
simplify and streamline the development, management, and deploy-
ment of IoT devices and applications. They offer a comprehensive
solution for device connectivity, data management, security, and
application development, enabling businesses to harness the poten-
tial of IoT technology more effectively and efficiently. Prominent
examples in this realm include industry giants such as Xiaomi and
Tuya. For example, to easy app development, Tuya provides a SDK
to help quickly build a control mini-app with JavaScript running
with the Tuya All-in-one App. The essential functionalities of vari-
ous IoT devices are managed by the All-in-one App, including tasks
like control command encoding and network communication.

Table 1: Comparison of Major IoT Platforms

Platform Release Date All-in-one App Remote Control SSL/TLS

Tuya 2014 ✔ ✔ ✔
Amazon 2015 ✗ ✔ ✔
Xiaomi 2016 ✔ ✔ ✔
Google 2017 ✗ ✔ ✔
Jingdong 2018 ✔ ✔ ✔
Huawei 2019 ✔ ✔ ✔

In Table 1, we present a comprehensive comparison of popu-
lar IoT platforms. These platforms share a common feature: sup-
port for remote control, which allows users to track, monitor, and
manage their IoT devices remotely. Additionally, security is of ut-
most importance to these IoT platforms, and they all implement
SSL/TLS encryption to safeguard data transmission across various
components of the IoT system. Furthermore, we have identified

switch (siid){
 case 1:
 case 2:
 switch (piid){
 case 1:
 powerSwitch(value);
 break;
 }

}

Remote control

recv(socket，cmd，64，0);

method = extrct(cmd, "method");
value = extrc(cmd, "params")

if (method == "set_power"){
 powerSwitch(value);
}

Local control

Cloud Server

Xiaomi Camera

Controller

[{"did":"XXX","siid":2,

"piid":1,"value":True}]

{ "id": XXX, "method":

"set_power", "params":["on"]}

Figure 2: Xiaomi Camera Control Command Difference in

Local and Remote Scenarios

a distinction among these platforms. To simplify implementation,
four IoT platforms—Xiaomi, Jingdong, Huawei, and Tuya—have in-
troduced the concept of an All-in-one App: all IoT devices based
on the IoT platform can be set up and controlled with mini-apps
instead of building standalone companion apps. For Amazon and
Google, although they introduce control apps, for some IoT devices
standalone companion apps are required to initialize IoT devices
first. Only after this initial setup can IoT devices be controlled by
apps such as Amazon Alexa and Google Home.

3 Motivation and Challenges

In this section, we will introduce the motivation, thread model,
scope of the paper and challenges. Solutions to those challenges
are briefly summarized while the details will be presented in §4.

3.1 Motivation

To detect vulnerabilities in IoT devices, companion app-assisted
blackbox fuzzing methods have been proposed [4, 25]. All these ex-
isting methods focus on fuzzing IoT devices within a local network.
However, according to previous research [1], many IoT devices can
only be controlled remotely via the cloud server. Even if the IoT
device supports both local control and remote control, the imple-
mentation in the device can be different. Figure 2 gives an example.
The “power on” control commands for Xiaomi camera in local and
remote scenarios are presented. The control commands are different
for these two scenarios and the different code branches are used in
the IoT device for local control and remote control. Therefore, the
existing local blackbox fuzzing is insufficient.

As discussed in §2.2, some IoT platforms introduce JavaScript to
build the frontend mini-app running on the All-in-one App. Exist-
ing blackbox IoT device fuzzing methods [4, 25] primarily rely on
identifying input sources at the Java level (e.g., the data generated
from the user input). However, in the case of the All-in-one App,
control commands may originate from mini-apps and then undergo
encoding at the Java level before being transmitted over the net-
work. In this scenario, existing methods may encounter difficulties

2343

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Kaizheng Liu et al.

in pinpointing the data source necessary for mutation, rendering
them inadequate for the task.

3.2 Thread Model and Scope

Thread model. Our objective is to test IoT devices for vulner-
abilities. We fuzz our own devices as authenticated users while
discovered vulnerabilities may be exploited by attackers in various
ways. For example, an insider attacker may exploit such a device
and plant malware on the device. The discovered vulnerabilities
may be exploited bypassing authentication.
Goal and Scope. We focus on devices that can be remotely con-
trolled and communicate with cloud servers through Wi-Fi. There
are over 4 billion connected IoT devices worldwide that are Wi-
Fi-enabled [27]. We target the four platforms with the All-in-one
App (as illustrated in Table 1) as those platforms that support com-
panion app communication have not been extensively investigated.
While IoT platforms typically provide both Android and iOS apps,
we focus on Android, which has a share of 71.5% on the mobile
operating system market [30].

3.3 Challenges and Solutions

For IoT platforms scuh as Xiaomi and Huawei, cloud server-side
verification and use of mini-app introduce new challenges as sum-
marized below when adapting existing methods to such scenarios.
We also briefly discuss how we address those challenges.
(C-I) High code coverage for black-box fuzzing. During the
fuzzing process, it is imperative to attain the highest possible code
coverage. However, in the context of IoT devices, which often op-
erate as black boxes, determining code coverage directly from the
device is infeasible. This limitation hinders our ability to guide the
mutation process effectively toward achieving high coverage. In
the companion app-assisted scenario, high code coverage can be
achieved by enumerating all control commands on the controller
side. Existing blackbox fuzzing methods [4, 25] have attempted
to address this challenge by manually running the app once and
replaying UI inputs using tools like RERAN [11] or adopting mon-
keyrunner [14] to generate UI inputs by generating random events.
However, this approach is time-consuming. Therefore, there is a
pressing need for innovative methods that can enhance fuzzing
techniques to reach high code coverage in these scenarios easily.

Control Command Extracting(§4.2)

To address this challenge, we find that for devices based on
IoT platforms, the control commands on the companion
app side can be extracted from the IoT platform’s document
search engine and synchronization network traffic.

(C-II) Formatted control command source identification. In
the case of devices on IoT platforms of interest, the control com-
mand is generated in mini-apps and then transferred to the Java
level of the All-in-one App for transformation and transmission.
Constructing fuzzing packets intuitively involves identifying the
data source within the mini-app by analyzing the JavaScript code.
However, this approach faces two significant challenges. First, as

M
in

i-A
p
p

In
te

rfa
ce

fu
n

ctio
n

E
n

co
d

in
g

fu
n

ctio
n

controlDevice:function(successCallback.failedCallback){

 JSBridge.send({type:`controlDevice`, data:[`ptz`,`left`]})

}

public void deviceControl(String[] command){

 Map encodedCommand = new HashMap();

 if (command[0] == `ptz`){

 switch (command[1]){

 case `left`: encodedCommand.put(127,0); break;

 case `right`: encodedCommand.put(127,1); break;

 }

 }

 snedToServer(encodedCommand);

}

@JavascriptInterface

public void _handleMessageFromJs(String type, String[] command){

 if (type == `controlDevice`){

 deviceControl(command);

 }

}

Figure 3: Example of Control Command Data Flow from

Mini-app to Message Sending

reported in [45], most mini-apps employ obfuscation techniques,
making it difficult to analyze and discover the data source within
mini-apps. Second, the control commands generated within the
mini-app may undergo the transformation in the Java code of the
All-in-one App before being sent, with the details below.

As illustrated in Figure 3, consider the example of controlling
a camera to turn to the left. The control command generated from
the mini-app is represented as a string array containing “ptz” and
“left”. This command is then transferred to the Java layer of the
All-in-one App. Subsequently, the string array control command
undergoes transformation and is transformed into a key-value pair
(e.g., {127:0}) by the “deviceControl” function. Finally, it is sent
to the cloud server using the “sendToServer” function. In this case,
the “sendToServer” function is the mutation point and we can
construct the fuzzing packets by mutating the argument passed
to the “sendToServer” function. Identifying this mutation point is
crucial for efficiently constructing well-structured fuzzing packets
containing control commands.

Hybrid Analysis Based Mutation Point Finding (§4.3)

We can first identify the so-called border functions that
receive control commands from the mini-apps at the Java
level with static app analysis and the large language model
(i.e., ChatGPT). We can then employ the hybrid analysis of
the All-in-One app with both static and dynamic analysis
to identify and confirm the mutation point where fuzzing
data is generated.

(C-III) Black-box cloud server verification inference. Cloud
server side verification can be present in the context of remote

2344

RIoTFuzzer: Companion App Assisted Remote Fuzzing for Detecting Vulnerabilities in IoT Devices CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

Guide

Yes

Hybrid Analysis

Based Mutation Point Finding (§4.3)

Cloud

Server

 Crash

Monitoring (§4.5)

Side-Channel-Guided

Fuzzing (§4.4)

No

JAVA Interface

Identification

Callgraph

Construction

Fuzzing Packet

Construction

Response

Receiving

APK

Mutation Point

Identification

Document Based Command Extracting (§4.2)

Dynamic

Hooking

Fuzzing Packet

Sending

Figure 4: System Overview

control while there is no such challenge in local fuzzing research [4,
9, 21, 25]. While the local control scenario allows all fuzzing packets
sent from the companion app to reach the IoT device, remote fuzzing
introduces the possibility that a fuzzing packet may not bypass
cloud server verification, and the packet could be rejected directly
by the cloud server and cannot reach the IoT device, resulting in
lower fuzzing efficiency. To develop an efficient remote fuzzing tool,
it is essential to first understand and uncover the cloud server’s
verification process. This is a significant challenge as the cloud
server is essentially a black box and its verification procedures are
not publicly disclosed.

Side-Channel-Guided Fuzzing (§4.4)

Since the cloud server operates as a black box, we can-
not directly discern its verification policy. However, we
find that the verification policy can be deduced through
side channels. By examining the response time between
sending packet and receiving response at the companion
app side, we have observed significant differences between
packets that can bypass cloud server verification and those
that cannot. Leveraging this insight, we can infer the cloud
server’s verification policy by generating fuzzing packets
with varying payload data.

4 RIoTFuzzer Design

To address the challenges in §3.3, we introduce RIoTFuzzer, a
method that leverages hybrid app analysis and blackbox fuzzing
for remotely discovering vulnerabilities in IoT devices through the
cloud server. We will first introduce the four components of RIoT-
Fuzzer and then present the detailed design of each component.

4.1 System Components

Figure 4 shows the four components of RIoTFuzzer.
• Document based control command extracting (§4.2). To
tackle the challenge inC-I, we first extract control commands of
the companion app from the document. We employ two meth-
ods for obtaining the control command document: utilizing the
official document search engine of a vendor or analyzing the
synchronization network traffic between the companion app
and the cloud server for JSON documents and others. Second,

we can also manually run the app to extract control commands
and patch any omissions.
• Hybrid analysis basedmutation point finding (§4.3). To ad-
dress C-II, we propose a method to identify the crucialmutation
point through a hybrid app analysis. Initially, we pinpoint candi-
date border functions in the All-in-one App that receive control
commands from the mini-app with static analysis. Subsequently,
we uncover the precise mutation point by leveraging dynamic
instrumentation based on these candidate border functions.
• Side-channel-guided fuzzing (§4.4). In remote fuzzing, infer-
ring and passing cloud server verification poses a significant
challenge, as highlighted in C-III. We have made a noteworthy
observation: the response time between packet sending and re-
sponse receiving vary between packets that successfully pass
cloud server verification and those that do not. Leveraging this
side channel, we can deduce the cloud server verification process
and subsequently construct fuzzing packets effectively.
• Network behavior based crash monitoring (§4.5). Since
the IoT device is a black box, we cannot directly detect if the
IoT device experiences a crash. We present a network behavior
based method for crash monitoring. When abnormal network
behavior is detected, we consider it as an indication of a crash
in the IoT device.

4.2 Document Based Control Command

Extracting

To address Challenge C-I, we divide the control command extrac-
tion process into two phases. In the first phase, we aim to discover
the document and extract control commands from it. In this way,
most control commands can be obtained. To ensure we comprehen-
sively extract control commands, In the second phase, we manually
execute the app and analyze the traffic exchanged between the
companion app and the cloud server. The extracted documents fall
into two categories: web documents and synchronization docu-
ments. Web document: We find that certain IoT platforms, notably
Xiaomi [39], have implemented document query engines. This fea-
ture facilitates the retrieval of control command documentation.
One simply inputs the name or model of the target device into the
query engine to obtain the necessary information. Synchronization
document: Upon each instance of opening the controlling mini-app,
the IoT device’s status is synchronized between the mini-app and

2345

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Kaizheng Liu et al.

1 "characteristics": [
2 {
3 "characteristicName": "on",
4 "characteristicType": "bool",
5 "method": "RW",
6 "enumList":
7 [
8 {
9 "enumVal": 0,
10 },
11 {
12 "enumVal": 1,
13 }
14]
15 }
16]

Figure 5: Document Snippet of “Chint” Plug

the cloud serverwith control commands and it is generally in the for-
mat of JSON or XML. This synchronization is crucial for preventing
state inconsistencies. We have noted that these control commands
can be extracted directly from the synchronization packets.

To extract the synchronization document, we explore the pay-
load of the synchronization packets. This involves analyzing the
network traffic between the companion app and the cloud server,
which is usually protected by SSL/TLS encryption. To circumvent
this protection, we utilize a man-in-the-middle (MITM) proxy tool,
namely mitmproxy [6], along with a self-signed certificate to con-
duct theMITM attack.We bypass the companion app side certificate
verification and SSL/TLS protection through dynamic instrumen-
tation [28] so as to obtain the payload. If there are fields that are
protected cryptographically in the payload, we hook the corre-
sponding cryptographic APIs to capture both the input arguments
(plaintext) and return value (ciphertext/hash). By comparing the
cryptographic text detected in the payload with the hooked return
values, we can unveil the plaintext. This reverse-engineering pro-
cess allows us to decipher the synchronization packets and unveil
the synchronization document.

Table 2: Analysis of “Chint” Plug Document Snippet

Key Function Detail Explanation of Value

characteristicName Operation Switch the plug
characteristicType Data type Data type in the command is bool
method Permission R stands reading and W stands writing
enumList Data range 0 stand poweroff and 1 stand poweron

For instance, consider the snippet from the document of a plug
manufactured by “Chint” based on the Huawei IoT platform, as
shown in Figure 5. This snippet provides crucial details about con-
trol commands for switching on/off the plug, including the control
command key, permission, data type, and valid value range. We
present the analysis result for the document snippet in Table 2. In
Figure 6, we present a demo control packet sent by the companion
app to power off the “Chint” plug through the cloud server and the
corresponding control command { “on”: 0 } can be discovered.

4.3 Hybrid Analysis Based Mutation Point

Finding

A simple idea addressing Challenge C-II is to mutate the control
command generated in the mini-app to construct the fuzzing packet

1 {
2 "body": {
3 "on": 0
4 },
5 "header": {
6 "method": "POST",
7 "requested": "XXX",
8 "mode": "ACK",
9 "accessToken": "XXX",
10 "timestamp": "20231127 T101634Z",
11 "to": "/devices/XXX/services/switch",
12 "from": "/users/XXX"
13 }
14 }

Figure 6: “Chint” Plug Power off Control Packet

by directly hooking border functions, i.e., the Java functions that
bridge the Javascript components and the Java components, and im-
plement data mutation to generate the fuzzing packet. However, as
shown in Figure 3, we find that for some IoT platforms, the control
command generated from the mini-app is not the key-value pair
shown in the document, and a data transformation function is used
to transfer the control command to the key-value pair type. There-
fore, the mutation is effective only after the data transformation
function constructs the valid fuzzing packets.

Our method of finding the mutation point has two phases. Phase-
I:We first identify potential border functions within the companion
app that may handle the control command generated by the mini-
app. These functions are then filtered using an LLM to exclude func-
tions unrelated to IoT device control and obtain candidate border
functions. Phase-II: Next, we find the control command (formatted
as the key-value pair) for a specific IoT device functionality within
the device document. We execute the relevant control functionality
in the mini-app and hook the candidate border functions and their
callees (discovered by constructing the call graph of the app) to
discover function arguments. Upon detecting the key-value pair
control command within the arguments of one of these candidate
border functions and their callees, we identify a potential muta-
tion point. To confirm it, we dynamically modify the value field
in the key-value pair through instrumentation, replay the control
operation, and monitor network packets via an MITM proxy. If the
mutated key-value pair control command appears in the network
payload, a mutation point is found, enabling further side-channel-
guided fuzzing. Otherwise, the recursive analysis continues. More
details of the two phases are given below.
Phase-I: Candidate border function identification. We first
reverse engineer the APKwith Apktool [5] to extract the smali code.
Then we try to discover potential border functions between the
mini-app and Java code to detect the control command generated by
the mini-app while avoiding analyzing the mini-app. We find that
two kinds of functions can be defined as potential border functions.
The first one is the functions annotated with specific annotations
such as @JavascriptInterface and @ReactMethod. The functions
with these annotations may be used by the mini-apps to deliver con-
trol commands from the mini-app to the Java component. The sec-
ond one is transferring the data using inter-process communication
(IPC) based on “Binder”. In this scenario, the “onTransact” function
is considered as the potential border function. Based on this obser-
vation, we then identify the potential border functions by scanning
the smali code of the target All-in-one Appwith regular expression.

2346

RIoTFuzzer: Companion App Assisted Remote Fuzzing for Detecting Vulnerabilities in IoT Devices CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

Table 3: Example of the Corresponding Output for Filtering

the IoT Device Controlling Non-irrelevant Function

Case # Interface Functions Explanation by LLM

1 controlRuleActive Can be used to activate or deactivate rules

2 deleteDevice Might be involved in removing a device, which
indicates they are related to device managementdeleteDeviceById

3

getDeviceConfig
Likely involved in retrieving and setting
configurations for devices

setDeviceInfo
setDeviceInfoWithProdId
setDeviceInfoWithoutCallback

4 updateGroupMemberDevice Can be relevant if the plug is part of a group

5
getDevInfo Retrieve device information could be related to

check the current state of the pluggetDevInfoAll
getDevInfoWithProdId

After we discover all the potential border functions from the
smali code with regular expression, we find there are many func-
tions irrelevant to IoT device control in the list of potential border
functions. This may lead to a large number of unnecessary dynamic
instrumentation in later dynamic analysis, resulting in low effi-
ciency and generating a lot of useless log output, which interferes
with the experiment. To address this issue, we adopt the APIs of-
fered by ChatGPT-4, to help identify candidate functions relevant
to the IoT device control from the list of potential border functions.

Table 3 presents an LLM output of the candidate border func-
tions related to powering off a smart plug manufactured by Chint,
which can run on the Huawei IoT platform. The prompt input to
the LLM can be divided into two parts, the first one is the operation
for the plug, e.g., power off a plug. The second one is the function
names of potential border functions. The LLM narrows down the
532 potential border functions extracted from the smali code to 11
candidate border functions. Based on our manual confirmation, we
find the actual border function is “setDeviceInfo”, which appears
in the output of the LLM.
Phase-II: Hierarchical dynamic instrumentation basedmu-
tation point confirmation. After identifying the candidate border
functions with static analysis, we perform further analysis to dis-
cover themutation point in the app for each IoT device, i.e., a specific
function that meets two conditions: (i) It accepts the control com-
mand as a function argument; (ii) The particular control command
appears in the network packets sent to the cloud server. Algorithm 1
presents the detailed steps explained as follows.

Step 1: We dynamically hook the candidate border functions identi-
fied in Phase-I and manually exercise an IoT device’s func-
tionality using the mini-app. During the execution, if we
discover a hooked candidate border function is executed
and the control command appears in the arguments, we tag
these functions as candidate mutation points. This step is
represented by line 5, line 6 and line 7 in Algorithm 1.

Step 2: To locate the final mutation point, we modify the control
command in arguments of candidate mutation points (i.e., the
control command in the format of key-value pair) with the
dynamic instrumentation and determine if the packet sent by
the companion app contains altered values. If we succeed in
pinpointing the altered values, we have effectively identified
the mutation point within the app. This step is represented
by line 8 and line 9.

Algorithm 1: Hierarchical Dynamic Instrumentation
Based Mutation Point Confirmation
input :𝐾𝑉 : Key-value pair for the specific functionality

𝐶𝐵𝐹𝐿𝑖𝑠𝑡 : Candidate border function list
output :𝑚𝑃𝑜𝑖𝑛𝑡 : Mutation point to construct fuzzing

packets
1 𝑚𝑃𝑜𝑖𝑛𝑡 = [];
2 Def main(𝑲𝑽 , 𝑪𝑩𝑭𝑳𝒊𝒔𝒕):
3 𝐶𝐺 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐸𝑚𝑝𝑡𝑦𝐺𝑟𝑎𝑝ℎ();
4 while 𝑇𝑟𝑢𝑒 do

5 𝑙𝑜𝑔← 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝐶𝐵𝐹𝐿𝑖𝑠𝑡);
6 if 𝐾𝑉 ∈ 𝑙𝑜𝑔 then
7 𝑚𝑃𝑜𝑖𝑛𝑡 ←𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑙𝑜𝑔);
8 𝑟𝑒𝑠𝑢𝑙𝑡 ←𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑚𝑃𝑜𝑖𝑛𝑡);
9 if 𝑟𝑒𝑠𝑢𝑙𝑡 == 𝑇𝑟𝑢𝑒 then

10 return𝑚𝑃𝑜𝑖𝑛𝑡 ;
11 end

12 else

13 𝐶𝐵𝐹𝐿𝑖𝑠𝑡 ←
𝑐𝑎𝑙𝑙𝑒𝑒𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (𝐶𝐺, 𝑙𝑜𝑔,𝐶𝐵𝐹𝐿𝑖𝑠𝑡);

14 if 𝐶𝐵𝐹𝐿𝑖𝑠𝑡 .𝑒𝑚𝑝𝑡𝑦 () then
15 return 𝑁𝑈𝐿𝐿;
16 end

17 end

18 end

19 else

20 𝐶𝐵𝐹𝐿𝑖𝑠𝑡 ← 𝑐𝑎𝑙𝑙𝑒𝑒𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (𝐶𝐺, 𝑙𝑜𝑔,𝐶𝐵𝐹𝐿𝑖𝑠𝑡);
21 if 𝐶𝐵𝐹𝐿𝑖𝑠𝑡 .𝑒𝑚𝑝𝑡𝑦 () then
22 return 𝑁𝑈𝐿𝐿;
23 end

24 end

25 end

26 Def calleeAnalysis(𝑪𝑮 , 𝒍𝒐𝒈, 𝑪𝑩𝑭𝑳𝒊𝒔𝒕):
27 if 𝐶𝐺.𝑒𝑚𝑝𝑡𝑦 () then
28 𝐶𝐺 ← 𝑐𝑎𝑙𝑙𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛();
29 end

30 𝐶𝐵𝐹𝐿𝑖𝑠𝑡_𝑡𝑚𝑝 ← 𝑓 𝑖𝑛𝑑𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑𝐹𝑢𝑛𝑐 (𝑙𝑜𝑔,𝐶𝐵𝐹𝐿𝑖𝑠𝑡);
31 𝐶𝐵𝐹𝑙𝑖𝑠𝑡 ← 𝑐𝑎𝑙𝑙𝑒𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡 (𝐶𝐺,𝐶𝐵𝐹𝐿𝑖𝑠𝑡_𝑡𝑚𝑝);
32 return 𝐶𝐵𝐹𝑙𝑖𝑠𝑡 ;

Step 3: If we cannot identify the control commands in the argu-
ments of the hooked functions or the altered values do not
appear in the network payload, we perform further analysis
to the callee functions of the candidate mutation points. Con-
sequently, we build the call graph for the target app with
Androguard [2]. Then we identify the candidate mutation
points in the call graph and discover their callee functions.
We mark these functions as new candidate mutation points
and record the function information, including the pack-
age name and argument information. We then dynamically
instrument these functions and exercise the IoT device’s
functionality as shown in Step I and determine if we find the
actual mutation point with the method shown in Step 2. If

2347

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Kaizheng Liu et al.

we do not find the mutation point, we recursively perform
step 3. This step is represented by line 13, and line 20.

4.4 Side-Channel-Guided Fuzzing

During the construction of fuzzing packets, our primary focus is
mutating the key-value pair based on the control command keys
extracted from the document to enumerate all the functionalities of
the IoT devices that can be triggered by the companion app. This
process begins with a random selection of the control command
key. Then, a value corresponding to a randomly chosen data type
from the following data types is generated:
• Value of numeric data type: For numeric data types, including
“Int” and “Float”, we generate two categories of values aimed
at inducing integer overflow or out-of-bound accesses. The first
approach involves generating values that adhere to the data
constraints specified for the respective data type in the device
documentation. This ensures that the values are within the
expected range for each type. The second approach is more
arbitrary, involving the generation of large or negative values
at random.
• Value of “Bool”: For “Bool”, we randomly select “True” or
“False” to construct the fuzzing packet.
• Length of “String”: For “String”, we focus on constructing
fuzzing packets with varying lengths. Given that documents
typically do not specify length restrictions, it is not feasible to
determine a valid length directly from the documentation. There-
fore, we employ a strategy to randomly generate strings ranging
from 1 to 10,000 characters in length to identify vulnerabilities
like buffer overflow.

Black-box cloud server verification inference. As highlighted
in C-III, randomly mutating control commands to generate fuzzing
packets poses a challenge to passing the cloud server’s verifica-
tion. We observe the response time to a request observed at the
companion app is different in two scenarios: (i) a packet passes
server verification; (ii) a packet fails server verification. Notably, if
a fuzzing packet can not pass the cloud server’s verification, the
server usually immediately sends a response back to the client. This
results in a significantly reduced response time, in contrast to the
scenario where a fuzzing packet successfully passes the cloud server
verification, reaches the IoT device and then waits for a response
from the IoT device. With this side channel, we can find the cloud
server verification policy and construct the fuzzing packet that can
pass the cloud server verification.

A threshold for the response time is needed to determinewhether
a packet can pass the server verification. We train the threshold
by sending labeled packets to the cloud server and record their
response time. It is designed that some packets pass the cloud
server verification and others cannot not. A suitable threshold such
as the Bayesian decision threshold can then be chosen to determine
whether the fuzzing packets successfully circumvent the cloud
server’s verification.

After obtaining the threshold, we can find data types of a specific
control command key that can pass the cloud server verification.
Network jitters may cause false positives, that is, the response time
for the packet that does not pass the cloud server verification may

be larger than the threshold. To reduce false positives introduced
by network jitters, we send fuzzing packets for a specific control
command key with a specific data type multiple times. If all packets
for a specific control command key and data type successfully reach
the IoT devices, it indicates that this data type can pass the cloud
server verification for that control command key and can be used
in fuzzing. The total number of packets sent to identify valid data
types for all control command keys is 𝑓 (𝑥) = 𝑥 × 𝑦 × 4 (𝑥 is the
number of control command keys, 𝑦 is the number of packets for a
specific data type for a specific control command key).

4.5 Network Behavior Based Crash Monitoring

Our approach involves a network behavior based vulnerability iden-
tification phase and a vulnerability confirmation phase based on
repeated testing. Given that IoT devices often operate as black boxes
and may lack user interfaces, monitoring device crashes poses a
considerable challenge during remote fuzzing. Furthermore, the
connection between the IoT device and the cloud server is typically
encrypted with SSL/TLS, making it impossible to determine a crash
by analyzing the content of the response data emitted by the IoT de-
vice. In light of insights from prior research [4, 9, 25], coupled with
our own observations, we rely on the network behavior between
the IoT device and the cloud server as a reliable side channel for
crash monitoring. Specifically, we leverage the following abnormal
network behaviors to identify a potential vulnerability of a target
IoT device and then record the exploiting packet.
• Active heartbeat packets:We proactively send heartbeat pack-
ets to the target IoT device within the local network using the
Ping [15] to assess its network status. The occurrence of a
“Destination Host Unreachable” response represents trig-
gering a vulnerability that can result in Denial of Service or
device rebooting.
• Passive network sniffing: Passive network sniffing allows us
to observe connection dropping and no response: (i) An unex-
pected termination of the connection between the IoT device
and the cloud server is considered an indicator of a crash. For
instance, if the device initiates the transmission of a FIN packet
to the cloud server following the reception of a fuzzing packet
from the cloud server, we infer that the fuzzing packet has led to
a vulnerability to make the IoT device terminate the connection
actively. (ii) The lack of a response to a fuzzing request sent
by the companion app suggests the potential occurrence of a
crash. This scenario could imply that the request may trigger a
vulnerability in the device, leading to its reboot.
We confirm the potential discovered vulnerability by repeat

transmitting the exploiting packet a few times. If the anomalous
network behavior persists across these retransmissions, we con-
clude that a vulnerability exists within the IoT device.

5 Evaluation

In this section, we present the evaluation experiments to answer
the following three research questions:
• RQ1: How does RIoTFuzzer perform in discovering the vulner-
abilities in IoT devices (§5.2)?
• RQ2: How effective is the side-channel-guided fuzzing proposed
in RIoTFuzzer (§5.3)?

2348

RIoTFuzzer: Companion App Assisted Remote Fuzzing for Detecting Vulnerabilities in IoT Devices CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

Table 4: Summary of IoT Devices under Testing. “-” means we can not discover the release time of the IoT product. “*” means

the firmware version cannot be discovered in the App. “\” means the device model can not be discovered in the device or App.

“NA” means we can not discover vulnerabilities in the IoT device within 12 hours. “✗” means DIANE fails to generate the fuzzing

packets for the device

RIoTFuzzer DIANE

of # of TimePlatform # Vendor Device Type Release Time Model Firmware Version Mini-app Control

Issues Packet [hours]

Xiaomi 1 Yeelight Bulb 2022 yeelink.light.color8 2.1.7_0041 ✔ 0 NA ✗
2 Yeelight Bulb 2018 yeelink.light.color2 2.0.6_0065 ✔ 0 NA ✗
3 Philips Bulb 2019 philips.light.cbulb 2.0.8_0004 ✔ 0 NA ✗
4 Xiaomi Gateway 2022 lumi.gateway.mcn001 1.0.7_0019 ✔ 0 NA ✗
5 Xiaomi Camera 2022 mxiang.camera.mod11 5.1.5_0035 ✔ 0 NA ✗
6 Xiaomi Camera 2020 chuangmi.camera.ip029a 4.3.4_0425 ✔ 0 NA ✗
7 Xiaomi Camera 2021 isa.camera.hlc7 4.3.2_0220 ✔ 1 8 ✗
8 Xiaovv Camera 2022 xiaovv.camera.q2lite 5.1.5_1434 ✔ 0 NA ✗
9 Imilab Camera 2023 chuangmi.camera.046d02 5.1.7_0408 ✔ 0 NA ✗
10 Xiaomi Humidifier 2022 deerma.humidifier.jsq2g 2.2.2.0012 ✔ 0 NA ✗
11 Xiaomi Plug 2022 cuco.plug.v3 1.0.8.0018 ✔ 0 NA ✗
12 Gosund Plug 2022 cuco.plug.cp1md 2.1.3_0010 ✔ 1 176 ✗
13 Gosund Plug 2022 cuco.acpartner.cp6 2.1.3_0012 ✔ 1 746 ✗
14 Xiaomi Remote control unit 2017 lumi.acpartner.v2 1.4.1_156.0148 ✔ 0 NA ✗

Jingdong 15 Bull Plug 2022 GN-Y2011 * ✔ 0 NA >12h
16 DELIXI Plug 2022 CD98I-MXWE2 57 ✔ 0 NA >12h
17 Jingdong Plug 2019 SPW01 1.3 ✔ 0 NA >12h

Huawei 18 Chint Plug 2022 Sunrise 6-111W 1.0.0.116 ✔ 1 21 >12h
19 wanyesw Plug 2019 ZCZ001 1.0.2 ✔ 1 17 >12h
20 SANSI Bulb 2018 C21BB-TE27-8W-D 1.01 ✔ 1 82 >12h
21 YKK Remote control unit 2021 YKK-1011 1.4.6 ✔ 0 NA >12h

Tuya 22 Sagewe Plug 2023 F2s501-GB V1.3.5 ✔ 0 NA ✗
23 Tuya Bulb 2023 BD-A60 v1.2.16 ✔ 0 NA ✗
24 Haojiaojing Camera - \ V3.2.9 ✔ 2 48 & 142 ✗
25 Yonganda Camera - YAD-LOJ V3.0.561 ✔ 1 5 ✗
26 zsviot Camera 2022 \ V8.26.31 ✔ 1 10 ✗
27 Tuya Camera - U6N V3.2.5 ✔ 1 47 ✗

• RQ3: How efficient is RIoTFuzzer compared to the state-of-the-
art method (§5.4)?

Table 5: APPs of Platforms under Testing

Platform Android APP Package Name APP Version

Xiaomi com.xiaomi.smarthome 9.0.605.4059-64-DEV
Jingdong com.jd.iots V1.9.2
Huawei com.huawei.smarthome 13.1.0.320
Tuya com.tuya.smart 3.25.0 (international)

5.1 Experiment Setup

We implement a prototype of RIoTFuzzer based on Frida [23] and
Androguard [2]. RIoTFuzzer is designed to be compatible with
four widely used IoT platforms, namely Xiaomi, Jingdong, Huawei,
and Tuya, enabling the identification of vulnerabilities in their IoT
devices. We use two Android phones (Redmi 10A with Android
9 and Redmi 10A with Android 10) as controllers to install the
companion apps of these four IoT platforms and construct the
fuzzing packets. The companion apps used in this paper is shown
in Table 5. The call graph construction for the target companion
app is conducted on a Linux server with a 2.4 GHz Xeon CPU and
128 GB memory. We use an Ubuntu computer with a 3.4 GHz Core
CPU and 8 GB memory equipped with a USB WiFi adapter as the
monitor by setting up an access point (AP) and configuring IoT
devices connected to the AP. The Side-channel-guided fuzzing is
conducted with a Ubuntu server with a 2.1 GHz Xeon CPU and 64
GB memory. Moreover, to ensure minimal any potential disruption
to the cloud server and prevent excessive load, we schedule the

transmission of fuzzing packets with randomized intervals ranging
between 10 and 15 seconds.

Before fuzzing, we first determine an appropriate threshold to
assess whether a fuzzing packet passes cloud server verification. In
this study, we construct 1000 packets for each of the two scenarios.
For the packets that do not pass server verification, 998 out of 1000
had a time interval of less than 300ms. Conversely, all 1000 packets
that can pass the cloud server verification had a time interval longer
than 300ms. Therefore, setting the threshold to 300ms effectively
distinguishes between the two scenarios.

5.2 Vulnerability Detection (RQ1)

We conduct an extensive vulnerability detection assessment using
RIoTFuzzer, examining a total of 27 IoT devices across various
categories, including the camera, gateway, and humidifier, across
the four IoT platforms as shown in Figure 7. Our fuzzing process
involves sending fuzzing packets to each device continuously for
12 hours while monitoring network behavior on the IoT device
side to identify potential vulnerabilities. To ensure the accuracy
of our findings and avoid false positives, we employ a rigorous
validation process. Upon detecting abnormal network behavior
indicative of potential vulnerabilities, we repeat the transmission of
the exploiting packet three times. Only when the abnormal behavior
is consistently observed we confirm the presence of a true positive
vulnerability in the IoT device.

As a result, RIoTFuzzer successfully identifies a total of 11 vul-
nerabilities across 10 IoT devices with Xiaomi, Huawei, and Tuya
IoT platforms as shown in Table 4. These devices encompass a

2349

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Kaizheng Liu et al.

6

11 12 13

14 15 16 17 18

10

19 20

21 22
23 24

26

25

27

1
2 3

4

7

5

6

8 9

Figure 7: All IoT Devices Used in Our Experiments

range of products, including the camera, plug, and bulb. Notably,
our vulnerability identification process requires 1,291 fuzzing pack-
ets in total, averaging 117 packets per vulnerability. All identified
vulnerabilities have been reported to their respective vendors, with
8 of them having already been confirmed.
Case Study. The “isa.camera.hlc7” (#7) home security smart
camera with 2k resolution produced by Xiaomi is operated via
the companion Android app “Mi Home”. To explore potential vul-
nerabilities within this camera, we initially bind the camera to
the companion app and we can control the camera with the app.
Subsequently, we obtain the device’s official documentation from
Xiaomi’s official document search engine [39] using the camera’s
model, i.e., “isa.camera.hlc7”.

Utilizing RIoTFuzzer, we detect that a vulnerability is induced
when the controller app sends a message, as depicted in Figure 8, re-
sulting in the camera temporarily going offline. In this scenario, the
value linked to the signature key is used for payload integrity verifi-
cation. This value is generated via HMAC, employing a secret key re-
ceived from the server during the binding phase, with the remaining
payload in the packet serving as input. Additionally, the nonce value
is randomly generated, did signifies the device ID, while siid and piid
represent the service ID and property ID of the IoT device, respec-
tively. The combination of siid and piid corresponds to a specific
functionality of the device, i.e., the control command key. The value
field, in turn, denotes the input data when executing this specific
functionality. As presented in the official documentation, the func-
tionality defined in Figure 8, i.e., siid : 6 and piid : 6, pertains to voice
download. The input data type for this functionality is designated as
string without a length limitation in the document. When we exer-
cise the functionality with -216.49537562852015 as input, the camera
will temporarily offline, and a DoS vulnerability is discovered.

To delve deeper into the cause of the crash, we tear down the
camera and access its UART port to obtain the console, which is
identifiable on the device’s circuit board. This port is then connected
to a computer using a UART-to-USB bridge, configured at a baud
rate of 57600. Upon establishing the UART connection, we can
capture the system log during the camera running. As revealed
in Figure 9, we can discover the vulnerability triggered by the
control packet is caused by a page fault, leading to the discovery of
a memory corruption.

1 signature :4 WSlV29P36LN0I0YgkeN5778HA2SNZfaD4br/PYI8aI=
2 nonce:eAQ3dn +5 Qp8Br8sa
3 data:
4 {"params":
5 [
6 {
7 "did":"1074697170",
8 "siid":6,
9 "piid":6,
10 "value": -216.49537562852015
11 }
12]
13 }

Figure 8: Vulnerability Discovery Fuzzing Packet Example

[assis] WDG CMD FEED DOG!!!!

[670.23] do_page_fault()#2:sending SlGSEGV to miot-serv for invalid read access from

[670.23] 00000000 (epc == 772c6928, ra == 00468a60)

[670.26] jxq03p stream off

[670.44] codec_codec_ctl: set CODEC TURN OFF...

[670.64] codec_codec_ctl: set CODEC TURN OFF…

Figure 9: Page Fault Log of the “isa.camera.hlc7” Camera

5.3 Effectiveness (RQ2)

To pass the cloud server side verification, we introduce a side-
channel-guided fuzzing approach in this paper. We demonstrate the
efficacy of this method by comparing it with a simpler approach
that mutates the control command arbitrarily to generate fuzzing
packets.

In our experimentation, we find there are two types of verifi-
cation in the cloud server that may prevent the relay of fuzzing
packets to the IoT device: one for data type verification and another
for validating the value range. The later verification is particularly
challenging since we may have to enumerate all potential values to
test if they can be successfully transferred to the IoT device.

We now present our experiments on inferring and passing the
data type verification. To ensure that packet relay failure is attrib-
uted to data type rather than data range mutation, we analyze
Xiaomi’s documentation to discover the valid value range for each
data type. However, these ranges may vary across different control
command keys. For this study, we randomly select a range for each
data type. We configure the value ranges for “Int” ([0,10]), “Float”
([0.0, 10.0]), and “Bool” (True, Flase). For “String”, the valid value
range is not explicitly stated in the documentation and we limit the
length to 4 characters to reduce the possibility of rejection by the
cloud server due to excessive length.

For comparison, we separately construct 5,000 distinct fuzzing
packets and record their response times for both the raw method
without side-channel guidance and RIoTFuzzer. To construct these
fuzzing packets, we first randomly select a valid control command
key, then choose an appropriate data type for this control command
key, and finally generate a valid value for the chosen data type. For
RIoTFuzzer, we adopt the data type inference by sending packets
with a specific data type of a certain control command key 10 times
to find the valid data type for the specific control command key
that can pass the server’s verification. We only mutate the data of
the valid data type associated with that control command key in
fuzzing packet construction. The outcomes of this evaluation are
detailed in Table 6, which highlights several critical findings.

2350

RIoTFuzzer: Companion App Assisted Remote Fuzzing for Detecting Vulnerabilities in IoT Devices CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

Table 6: Effectiveness of Side-Channel-Guided Fuzzing

Platform # Total packets Raw RIoTFuzzer Improvement

Xiaomi 1 5000 100.00% 100.00% 0.00%
2 5000 91.36% 99.34% 8.73%
3 5000 20.72% 94.34% 355.31%
4 5000 48.10% 95.08% 97.67%
5 5000 46.78% 76.04% 62.55%
6 5000 57.14% 92.58% 62.02%
7 5000 53.34% 94.74% 77.62%
8 5000 41.64% 78.34% 88.14%
9 5000 39.72% 75.48% 90.03%
10 5000 25.86% 91.18% 252.59%
11 5000 32.90% 80.46% 144.56%
12 5000 51.50% 95.94% 86.29%
13 5000 40.18% 83.42% 107.62%
14 5000 20.44% 94.56% 362.62%

Jingdong 15 5000 100.00% 100.00% 0.00%
16 5000 100.00% 100.00% 0.00%
17 5000 100.00% 100.00% 0.00%

Huawei 18 5000 100.00% 100.00% 0.00%
19 5000 70.64% 99.34% 40.63%
20 5000 50.06% 95.52% 90.81%
21 5000 39.10% 94.40% 141.43%

Tuya 22 5000 100.00% 100.00% 0.00%
23 5000 100.00% 100.00% 0.00%
24 5000 100.00% 100.00% 0.00%
25 5000 100.00% 100.00% 0.00%
26 5000 100.00% 100.00% 0.00%
27 5000 100.00% 100.00% 0.00%

Average 76.62%

• Effectiveness of side-channel-guided fuzzing. As indi-
cated in Table 6, side-channel-guided fuzzing significantly
enhances the effectiveness of fuzzing, resulting in an aver-
age improvement of 76.62% and a maximum improvement
of 362.62% calculated with the following formula.

(𝑆𝑈𝐶RIoTFuzzer − 𝑆𝑈𝐶𝑅𝑎𝑤)/𝑆𝑈𝐶𝑅𝑎𝑤
• Diverse verification among IoT platforms. The evalua-
tion also highlights the variance in cloud server-side verifi-
cation policies among different IoT platforms. Specifically,
for Jingdong, we discover the absence of a data type verifica-
tion in the cloud server, allowing all fuzzing packets to be
transmitted to the IoT device via the cloud server.
• Intra-platform diverse verification. Our experiments re-
veal that even within the same IoT platform, such as Xiaomi,
the policies for cloud server verification vary among differ-
ent IoT devices. For instance, the bulb (“yeelink.light.color8”)
can successfully 100% receive fuzzing packets through the
cloud server. However, for other IoT devices on the same plat-
form, the fuzzing packets encounter restrictions in passing
through the cloud server-side verification.

5.4 Baseline Comparison (RQ3)

To demonstrate the efficiency of RIoTFuzzer, we conduct a com-
parative analysis against the state-of-the-art blackbox IoT device
fuzzing methods. Four existing blackbox fuzzing methods are simi-
lar to our work including SNIPUZZ [9], HubFuzzer [21], IoTFuzzer
[4], and DIANE [25]. SNIPUZZ relies on gathering the API-testing
program of each target IoT device to generate initial seeds for
fuzzing, which may not always be accessible [21]. HubFuzzer is
a hub-based fuzzer designed to target IoT devices that communi-
cate with the hub using ZigBee or Z-Wave protocols. However,
this paper focuses on WiFi-based IoT devices, which are not cov-
ered by HubFuzzer. IoTFuzzer, on the other hand, lacks publicly

available source code. Meanwhile, DIANE has made significant
improvements over IoTFuzzer, addressing some of its limitations.
Consequently, DIANE is selected as the baseline for comparison.

We extend DIANE, which was designed for fuzzing IoT devices
within the local network, to remotely fuzz the IoT device through
the cloud server for comparison. Initially, we configure the compan-
ion apps and IoT devices connecting to different networks. We then
establish a monitor between the IoT device and the cloud server to
detect crashes with abnormal network behavior. We set up another
monitor between the controller and the cloud server to capture
the network traffic sent from the companion app during the setup
phase of the DIANE.

We utilize DIANE to analyze the apps listed in Table 5 and the
IoT devices shown in Figure 7. Before fuzzing, DIANE first needs to
locate the network packet-sending functions and proper mutation
points in the apps. Meanwhile, the RERAN [11] is adopted to replay
UI inputs. In our experiments, it fails to identify these functions in
the apps of Xiaomi and Tuya due to crashes during replay UI inputs
with RERAN which prevents further fuzzing of the IoT devices
controlled by these two apps. For the apps of Jingdong and Huawei,
DIANE can finish the setup phase and the further fuzzing can be
performed. After 12 hours of fuzzing of each device, the evaluation
results are displayed in the last two columns of Table 4. We have
successfully conducted fuzzing on 7 IoT devices using DIANE and
fail to discover any vulnerabilities.

After analyzing DIANE’s source code and runtime logs, we have
pinpointed three main reasons for its failure to detect vulnerabil-
ities in Jingdong and Huawei IoT devices. Firstly, DIANE fails to
correctly identify mutation points due to the incomplete call graph.
It backward identifies mutation points starting from message send-
ing functions based on the call graph. Secondly, since DIANE fails
to identify the correct mutation points, we further configure the
candidate message sending functions as the mutation points for DI-
ANE. However, DIANE fails to generate valid fuzzing packets due to
invalid data format and message authentication value in the packet
payload. As a result, the fuzzing packets with the altered data will
be directly rejected by the cloud server instead of relaying to the
IoT device. This prevents DIANE from uncovering vulnerabilities in
the IoT device through the cloud server. Third, we try to configure
the JAVA interface functions as the mutation points. However, we
observe the mini-app sends a JSON-format control command to the
JAVA component when controlling the IoT device. The mutation
policy of DIANE neglects the significance of the data format and it
prevents DIANE from constructing fuzzing packets. These findings
show that the existing IoT device blackbox fuzzing methods may
exhibit reduced effectiveness in remote fuzzing scenarios.

6 Discussion

Ethical Concerns. We carefully conducted all the experiments
to ensure we did not cause any harm to the cloud server or other
users and follow the ethical and legal boundaries similar to [22, 36].
First, all the experiments were conducted on our own purchased
IoT devices and accounts. Second, following the existing research
practice [3, 7, 46], we set a proper time interval to avoid affect-
ing the service of the cloud server and not causing excessive load
during the fuzzing. Particularly, fuzzing packets were sent every

2351

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Kaizheng Liu et al.

Table 7: Comparison of IoT Fuzzing Tools

Fuzzers Type

Release

Time

App

Assisted

Firm.

Free

Zero-day

Detection

Remote

Fuzzing

IoTFuzzer [4] Blackbox 2018 ! ! ! %

Firm-AFL [47] Greybox 2019 % % ! %

DIANE [25] Blackbox 2021 ! ! ! %

SNIPUZZ [9] Blackbox 2021 % ! ! %

EQUAFL [48] Greybox 2022 % % ! %

HubFuzzer [21] Blackbox 2023 % ! ! %

Greenhouse [31] Greybox 2023 % % ! %

RIoTFuzzer Blackbox 2024 ! ! ! !

10-15 seconds. Third, all the vulnerabilities we identified have been
promptly reported to the respective vendors. We have received
acknowledgments from them, who have no issues about our vul-
nerability discovery. For example, Tuya confirms the vulnerabilities
discovered in Tuya camera (#24) are located within their SDK and
have been fixed in the latest SDK.
Threats to Validity. In this paper, we implement RIoTFuzzer
and examine 27 IoT devices on 4 IoT platforms. Although we have
discovered 11 vulnerabilities among these IoT devices, there exist
limitations. First, although we try our best to provide an automatic
fuzzer, manual efforts are still required in the document collection.
For example, the document of Xiaomi enabled IoT devices can be
collected using the official document search engine by inputting
the device name manually. Then the control commands can be au-
tomatically extracted from the document. Second, we did not try to
identify the root causes of identified vulnerabilities. The goal of the
paper is to find vulnerabilities through fuzzing, as done in related
work [4, 9, 25].

7 Related Work

Various vulnerabilities have been discovered in IoT devices [19, 29,
49]. Many automatic methods have been proposed to efficiently
discover the vulnerability in IoT devices. In this section, we review
related work from three categories: IoT device fuzzing, app-assisted
IoT device vulnerability detection and All-in-one App security.
IoT Device Fuzzing. Fuzzing is a popular and effective method
to discover vulnerabilities. Fuzzing-based IoT device vulnerability
detectionmethods have been proposed [4, 9, 21, 25, 31, 47, 48]. These
research efforts can be categorized into two distinct approaches:
blackbox IoT device fuzzing [4, 9, 21, 25] and grey box IoT device
fuzzing [31, 47, 48]. We provide a simple comparison in Table 7 and
review these methods below.
Blackbox IoT device fuzzing. Due to the closed source and ar-
chitectural diversity of IoT devices, it is challenging to statically
analyze or dynamically instrument the IoT device. Therefore black-
box fuzzing methods are proposed to address this challenge and
discover the vulnerabilities in the IoT devices [4, 9, 21, 25]. These
methods treat IoT devices as black boxes and perform fuzzing by
sending messages to the target devices from the controller side.
Subsequently, they utilize side-channel information, such as net-
work behavior, to observe whether the device experiences a crash,
thereby inferring the presence of vulnerabilities in the IoT device.

For example, Chen et al. [4] proposed the first companion app-
assisted blackbox IoT device fuzzing method. they analyze the app
to discover the network-related or data-encoding method-related

UI components. Then the UI functions are hooked and the user
input is mutated to generate valid fuzzing packets for IoT devices.
However, these current blackbox testing methods can only perform
fuzzing on IoT devices within the local network and do not consider
remote control scenarios involving cloud servers.
Greybox IoT device fuzzing. Due to the inability of blackbox
fuzzing to access runtime information about the devices, it may be
of low efficiency and code coverage. Therefore, researchers have
attempted to investigate gray-box testing methods. They first adopt
emulation techniques to execute the applications and collect the
execution feedback of the application under fuzzing with program
instrumentation. However, due to the closed source and peripheral
diversity of the IoT devices direct emulation and instrumentation
are of low efficiency or infeasible. To address these issues, many
works have been proposed to improve the throughput [31, 47, 48].

For instance, Zheng et al. [48] propose a greybox fuzzing frame-
work with enhanced user-mode emulation. They execute the appli-
cation with the full-system emulation to automatically set up the
execution environment and the efficiency is improved by directly
passing system calls to the host machine. However, it is important to
note that all these emulation-based greybox fuzzing methods share
a common prerequisite: the acquisition of the IoT device’s firmware.
Nevertheless, this requirement cannot always be met in practice.
App-Assisted Vulnerability Detection. Because of the diverse
architectures of IoT devices, directly analyzing the IoT device is a
challenging topic. Therefore, to address this challenge and inspired
by the observation that many IoT devices can be controlled with
a companion app, researchers have proposed app-assisted IoT de-
vice vulnerability detection methods [37, 38, 50] in addition to the
blackbox fuzzing methods discussed above. For example, Wang et
al. [37] discover IoT devices tend to reuse vulnerable components
and the reuse can be indirectly inferred from the companion apps.
Based on this observation, they propose a cluster-based method to
identify the usage of vulnerable components in IoT devices.
All-in-one App Security.We conducted fuzzing on IoT devices
with the assistance of All-in-one Apps (or mini-apps), and there are
numerous studies [20, 41, 42, 45, 46] focused on the security of such
apps. Yang et al. [42] scrutinized vulnerabilities pertaining to cross-
mini-app redirection attacks targeting WeChat and Baidu. Wang
et al. devised TaintMini, a tool aimed at monitoring the flow of
sensitive data in mini-apps through the use of data flow graphs [33].
Their recent investigation brought to light concealed APIs in super
apps, thus underscoring potential vulnerabilities [35]. Moreover,
their study APIDiff [34] showcased discrepancies in API execution
across different platforms within WeChat.

8 Conclusion

In this paper, we introduce the RIoTFuzzer [26], an innovative
blackbox fuzzing approach designed for remote vulnerability dis-
covery in IoT devices through cloud servers. We present a hierar-
chical dynamic instrumentation based method for discovering the
mutation point to enhance the effectiveness of fuzzing IoT devices
through cloud servers. These mutation points allow us to construct
the fuzzing packets by leveraging data transformation functions
within the companion app. Additionally, we propose a side-channel

2352

RIoTFuzzer: Companion App Assisted Remote Fuzzing for Detecting Vulnerabilities in IoT Devices CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

guided fuzzing method to infer the cloud server validation policies
and facilitate the construction of fuzzing packets that successfully
reach the IoT device. Our evaluation of RIoTFuzzer involved 27
IoT devices from four IoT platforms, resulting in the discovery of
11 vulnerabilities across 10 devices. Furthermore, our evaluation
demonstrates that the side-channel guided fuzzing method signifi-
cantly improves the success rate of delivering fuzzing packets to IoT
devices, with an average increase of 76.62% and amaximum increase
of 362.62%. Our experiment results highlight the effectiveness and
efficiency of RIoTFuzzer.

Acknowledgement

We thank the anonymous reviewers for their valuable suggestions
and comments. This research was supported in part by National
Natural Science Foundation of China Grant Nos. 62072103 and
62232004, by USNational Science Foundation (NSF) Awards 1931871
and 2325451, by Jiangsu Provincial Key R&D Programs Grant Nos.
BE2022680 and BE2022065-5, by Jiangsu Provincial Key Laboratory
of Network and Information Security Grant No. BM2003201, Key
Laboratory of Computer Network and Information Integration of
Ministry of Education of China Grant No. 93K-9, and Collaborative
Innovation Center of Novel Software Technology and Industrializa-
tion. Any opinions, findings, conclusions, and recommendations in
this paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

References

[1] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:
Security Evaluation of Home-Based IoT Deployments. In Proceedings of the 40th
IEEE Symposium on Security and Privacy (S&P’19). San Francisco, CA, USA, 590–
604.

[2] Anthony Desnos. 2012-2024. Androguard. https://github.com/androguard/
androguard.

[3] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2020. Checking
Security Properties of Cloud Service REST APIs. In Proceedings of the 13th IEEE
International Conference on Software Testing, Validation and Verification (ICST’20).
Porto, Portugal, 387–397.

[4] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-
based Fuzzing. In Proceedings of the 25th Annual Network and Distributed System
Security Symposium (NDSS’18). San Diego, California, USA, 1–15.

[5] Tumbleson Connor and Wiśniewski Ryszard. 2024. ApkTool. https://ibotpeaches.
github.io/Apktool.

[6] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. 2010–.
mitmproxy: A free and open source interactive HTTPS proxy. https://mitmproxy.
org/. Version 7.0.

[7] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. 2013. ZMap: Fast
Internet-wide Scanning and Its Security Applications. In Proceedings of the 22th
USENIX Security Symposium (USENIX Security’13). Washington, DC, USA, 605–
620.

[8] Eric Sesterhenn and Martin J. Muench. 2015. Bruteforce Exploit Detector. https:
//github.com/wireghoul/doona.

[9] Xiaotao Feng, Ruoxi Sun, Xiaogang Zhu, Minhui Xue, Sheng Wen, Dongxi Liu,
Surya Nepal, and Yang Xiang. 2021. Snipuzz: Black-box Fuzzing of IoT Firmware
via Message Snippet Inference. In Proceedings of the 28th Conference on Computer
and Communications Security (CCS’21). Virtual Event, Republic of Korea, 337–350.

[10] Fortune Business Insights. June 06, 2024. Smart Home Market Size, Share &
COVID-19 Impact Analysis, By Device Type (Safety and Security Devices, Energy
and Water Control, Climate Control, Lighting Control, Consumer Electronics),
By Housing Type (Multifamily Dwelling, Single Family Dwelling), and Regional
Forecast, 2023-2030. https://www.fortunebusinessinsights.com/industry-reports/
smart-home-market-101900.

[11] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd D. Millstein. 2013.
RERAN: timing- and touch-sensitive record and replay for Android. In Proceed-
ings of the 35th International Conference on Software Engineering (ICSE’13). San
Francisco, CA, USA, 72–81.

[12] GRACE MACEJ. 2016. DDoS attack on Dyn took down the bulk of the internet
on Friday. https://blog.avast.com/ddos-attack-on-dyn-took-down-the-bulk-of-
the-internet-on-friday

[13] HUAWEI Inc. 2019. Huawei HiLink Ignites IoT Development. https://consumer.
huawei.com/en/press/news/2019/huawei-hilink-ignites-iot-development/.

[14] Google Inc. 2024. monkeyrunner. https://developer.android.com/studio/test/
monkeyrunner/index.html.

[15] iputils. 2024. iputils. https://github.com/iputils/iputils.
[16] Yan Jia, Luyi Xing, Yuhang Mao, Dongfang Zhao, XiaoFeng Wang, Shangru Zhao,

and Yuqing Zhang. 2020. Burglars’ IoT Paradise: Understanding and Mitigating
Security Risks of General Messaging Protocols on IoT Clouds. In Proceedings of
the 41st IEEE Symposium on Security and Privacy (S&P’20). San Francisco, CA,
USA, 465–481.

[17] Georgios Kambourakis, Constantinos Kolias, and Angelos Stavrou. 2017. The
Mirai botnet and the IoT Zombie Armies. In Proceedings of the 36th Military
Communications Conference (MILCOM’17). Baltimore, MD, USA, 267–272.

[18] Zhen Ling, Junzhou Luo, Yiling Xu, Chao Gao, Kui Wu, and Xinwen Fu. 2017.
Security Vulnerabilities of Internet of Things: A Case Study of the Smart Plug
System. IEEE Internet of Things Journal 4, 6 (2017), 1899–1909.

[19] Kaizheng Liu, Ming Yang, Zhen Ling, Huaiyu Yan, Yue Zhang, Xinwen Fu, and
Wei Zhao. 2021. On Manually Reverse Engineering Communication Protocols of
Linux-Based IoT Systems. IEEE Internet of Things Journal 8, 8 (2021), 6815–6827.

[20] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFengWang, and
Xueqiang Wang. 2020. Demystifying Resource Management Risks in Emerging
Mobile App-in-App Ecosystems. In Proceedings of the 27th ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS’20). Virtual Event, USA,
569–585.

[21] Xiaoyue Ma, Qiang Zeng, Haotian Chi, and Lannan Luo. 2023. No More Com-
panion Apps Hacking but One Dongle: Hub-Based Blackbox Fuzzing of IoT
Firmware. In Proceedings of the 21st Annual International Conference on Mobile
Systems, Applications and Services (MobiSys’23). Helsinki, Finland, 205–218.

[22] Abner Mendoza and Guofei Gu. 2018. Mobile Application Web API Reconnais-
sance: Web-to-Mobile Inconsistencies & Vulnerabilities. In Proceedings of the 39th
IEEE Symposium on Security and Privacy (S&P’18). San Francisco, California, USA,
756–769.

[23] oleavr. 2020. Dynamic instrumentation toolkit for developers, reverse-engineers,
and security researchers. https://frida.re/.

[24] OWASP. 2021. Web services fuzzing tool for http and soap. https://sourceforge.
net/projects/wsfuzzer/files/.

[25] Nilo Redini, Andrea Continella, Dipanjan Das, Giulio De Pasquale, Noah Spahn,
Aravind Machiry, Antonio Bianchi, Christopher Kruegel, and Giovanni Vigna.
2021. Diane: Identifying Fuzzing Triggers in Apps to Generate Under-constrained
Inputs for IoT Devices. In Proceedings of the 42nd Symposium on Security and
Privacy (S&P’21). San Francisco, CA, USA, 484–500.

[26] RIoTFuzzer. 2024. https://github.com/kzLiu2017/RIoTFuzzer.git.
[27] Satyajit Sinha. May 24, 2023. State of IoT 2023: Number of connected IoT de-

vices growing 16% to 16.7 billion globally. https://iot-analytics.com/number-
connected-iot-devices/.

[28] sensepost. 2021. objection - runtime mobile exploration. https://github.com/
sensepost/objection?tab=readme-ov-file.

[29] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In Proceedings of the 22nd Annual Network
and Distributed System Security Symposium (NDSS’15). San Diego, CA, USA, 1–15.

[30] StatCounter Inc. 2024. Mobile Operating System Market Share Worldwide. https:
//gs.statcounter.com/os-market-share/mobile/worldwide.

[31] Hui Jun Tay, Kyle Zeng, Jayakrishna Menon Vadayath, Arvind S. Raj, Audrey
Dutcher, Tejesh Reddy, Wil Gibbs, Zion Leonahenahe Basque, Fangzhou Dong,
Zack Smith, Adam Doupé, Tiffany Bao, Yan Shoshitaishvili, and Ruoyu Wang.
2023. Greenhouse: Single-Service Rehosting of Linux-Based Firmware Binaries
in User-Space Emulation. In Proceedings of the 32nd USENIX Security Symposium
(USENIX Security’23). Anaheim, CA, USA, 5791–5808.

[32] Tuya Inc. April 12, 2024. Tuya IoT Development Platform. https://developer.tuya.
com/en/docs/iot/introduction-of-tuya?id=K914joffendwh.

[33] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taint-
mini: Detecting flow of sensitive data in mini-programs with static taint analysis.
In Proceedings of the IEEE/ACM 45th International Conference on Software Engi-
neering (ICSE’23). Melbourne, Australia, 932–944.

[34] Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. One Size Does Not Fit All:
Uncovering and Exploiting Cross Platform Discrepant APIs in WeChat. In Pro-
ceedings of the 32nd USENIX Security Symposium (USENIX Security’23). Anaheim,
CA, USA, 6629–6646.

[35] Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. Uncovering and Exploiting
Hidden APIs in Mobile Super Apps. In Proceedings of the 30th ACM SIGSAC
Conference on Computer and Communications Security (CCS’23). Copenhagen,
Denmark, 2471–2485.

[36] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz Qadeer. 2011. How to Shop
for Free Online - Security Analysis of Cashier-as-a-Service Based Web Stores.

2353

https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://ibotpeaches.github.io/Apktool
https://ibotpeaches.github.io/Apktool
https://mitmproxy.org/
https://mitmproxy.org/
https://github.com/wireghoul/doona
https://github.com/wireghoul/doona
https://www.fortunebusinessinsights.com/industry-reports/smart-home-market-101900
https://www.fortunebusinessinsights.com/industry-reports/smart-home-market-101900
https://blog.avast.com/ddos-attack-on-dyn-took-down-the-bulk-of-the-internet-on-friday
https://blog.avast.com/ddos-attack-on-dyn-took-down-the-bulk-of-the-internet-on-friday
https://consumer.huawei.com/en/press/news/2019/huawei-hilink-ignites-iot-development/
https://consumer.huawei.com/en/press/news/2019/huawei-hilink-ignites-iot-development/
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://github.com/iputils/iputils
https://frida.re/
https://sourceforge.net/projects/wsfuzzer/files/
https://sourceforge.net/projects/wsfuzzer/files/
https://github.com/kzLiu2017/RIoTFuzzer.git
https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://github.com/sensepost/objection?tab=readme-ov-file
https://github.com/sensepost/objection?tab=readme-ov-file
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://developer.tuya.com/en/docs/iot/introduction-of-tuya?id=K914joffendwh
https://developer.tuya.com/en/docs/iot/introduction-of-tuya?id=K914joffendwh

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Kaizheng Liu et al.

In Proceedings of the 32nd IEEE Symposium on Security and Privacy (S&P’11).
Berkeley, California, USA, 465–480.

[37] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and XiaoFeng Wang. 2019. Look-
ing from the Mirror: Evaluating IoT Device Security through Mobile Companion
Apps. In Proceedings of the 28th USENIX Security Symposium (USENIX Security’19).
Santa Clara, CA, 1151–1167.

[38] Haohuang Wen, Qi Alfred Chen, and Zhiqiang Lin. 2020. Plug-N-Pwned: Com-
prehensive Vulnerability Analysis of OBD-II Dongles as A New Over-the-Air
Attack Surface in Automotive IoT. In Proceedings of the 29th USENIX Security
Symposium, (USENIX Security’20). Virtual Event, 949–965.

[39] Xiaomi Inc. –. Xiaomi Miot Spec. https://home.miot-spec.com/.
[40] Xiaomi Inc. 2023. Xiaomi 2023 Q2 Adjusted Net Profit Surges 147% to RMB5.1

Billion. https://www.mi.com/global/discover/article?id=3008.
[41] Yuqing Yang, Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. SoK: Decoding

the Super App Enigma: The Security Mechanisms, Threats, and Trade-offs in
OS-alike Apps. arXiv preprint arXiv:2306.07495 (2023).

[42] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2022. Cross Miniapp Request Forgery:
Root Causes, Attacks, and Vulnerability Detection. In Proceedings of the 29th
ACM SIGSAC Conference on Computer and Communications Security (CCS’22).
Los Angeles, CA, USA, 3079–3092.

[43] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. 2024.
A survey on large language model (llm) security and privacy: The good, the bad,
and the ugly. High-Confidence Computing (2024), 100211.

[44] Yuchuan Wang. 2019. JD’s IoT Smart Housing Solution Brings the Fu-
ture of Living to Hundreds of Residential Compounds Across China.
https://jdcorporateblog.com/jds-iot-smart-housing-solution-brings-the-

future-of-living-to-hundreds-of-residential-compounds-across-china/.
[45] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang

Lin. 2021. A Measurement Study of Wechat Mini-Apps. ACM on Measurement
and Analysis of Computing Systems 5, 2 (2021), 14:1–14:25.

[46] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Don’t Leak Your Keys: Under-
standing, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs. In
Proceedings of the 30th ACM SIGSAC Conference on Computer and Communications
Security (CCS’23). Copenhagen, Denmark, 2411–2425.

[47] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. 2019. FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware
via Augmented Process Emulation. In Proceedings of the 28th USENIX Security
Symposium (USENIX Security’19). Santa Clara, CA, USA, 1099–1114.

[48] Yaowen Zheng, Yuekang Li, Cen Zhang, Hongsong Zhu, Yang Liu, and Limin
Sun. 2022. Efficient greybox fuzzing of applications in Linux-based IoT devices
via enhanced user-mode emulation. In Proceedings of the 31st International Sym-
posium on Software Testing and Analysis (ISSTA’22). Virtual Event, South Korea,
417–428.

[49] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and
Yuqing Zhang. 2019. Discovering and Understanding the Security Hazards
in the Interactions between IoT Devices, Mobile Apps, and Clouds on Smart
Home Platforms. In Proceedings of the 28th USENIX Security Symposium (USENIX
Security’19). Santa Clara, CA, USA, 1133–1150.

[50] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. 2019. Au-
tomatic Fingerprinting of Vulnerable BLE IoT Devices with Static UUIDs from
Mobile Apps. In Proceedings of the 26th Conference on Computer and Communica-
tions Security (CCS’19). London, UK, 1469–1483.

2354

https://home.miot-spec.com/
https://www.mi.com/global/discover/article?id=3008
https://jdcorporateblog.com/jds-iot-smart-housing-solution-brings-the-future-of-living-to-hundreds-of-residential-compounds-across-china/
https://jdcorporateblog.com/jds-iot-smart-housing-solution-brings-the-future-of-living-to-hundreds-of-residential-compounds-across-china/

	Abstract
	1 Introduction
	2 Background
	2.1 IoT System Architecture
	2.2 IoT Platforms

	3 Motivation and Challenges
	3.1 Motivation
	3.2 Thread Model and Scope
	3.3 Challenges and Solutions

	4 RIoTFuzzer Design
	4.1 System Components
	4.2 Document Based Control Command Extracting
	4.3 Hybrid Analysis Based Mutation Point Finding
	4.4 Side-Channel-Guided Fuzzing
	4.5 Network Behavior Based Crash Monitoring

	5 Evaluation
	5.1 Experiment Setup
	5.2 Vulnerability Detection (RQ1)
	5.3 Effectiveness (RQ2)
	5.4 Baseline Comparison (RQ3)

	6 Discussion
	7 Related Work
	8 Conclusion
	References

