
Journal of Systems Architecture 119 (2021) 102240

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Secure boot, trusted boot and remote attestation for ARM TrustZone-based
IoT Nodes
Zhen Ling a,∗, Huaiyu Yan a, Xinhui Shao a, Junzhou Luo a, Yiling Xu b, Bryan Pearson c,
Xinwen Fu d

a Southeast University, Nanjing, China
b Alibaba Group, Hangzhou, China
c University of Central Florida, Orlando, FL, USA
d University of Massachusetts Lowell, Lowell, MA, USA

A R T I C L E I N F O

Keywords:
Internet of Things
Integrity
TrustZone

A B S T R A C T

With the extensive application of IoT techniques, IoT devices have become ubiquitous in daily lives. Meanwhile,
attacks against IoT devices have emerged to compromise IoT devices by tampering with system pre-installed
programs or injecting new malware. To mitigate these attacks, integrity enforcement of IoT systems has been
proposed. The integrity of an IoT device system includes load-time integrity and runtime integrity. In this
paper, we design an IoT system based on ARM TrustZone to enforce the system integrity. First, we establish
the root of trust and propose a hybrid booting approach consisting of both secure boot and trusted boot to
enforce the system load-time integrity. Second, we investigate a paging-based process integrity measurement
method to measure the NW processes and conduct remote attestation based on the measurement results
ensuring the NW runtime process integrity. We implement an IoT prototype system on a NXP i.MX6Q SABRE
SD development board to assess its feasibility. Real-world experiment results demonstrate that our prototype
introduces negligible performance overhead to the original system.
1. Introduction

The widespread usage of smart devices in various industries and
fields brings a new era of Internet of Things (IoT). It is estimated that
a total number of 11.7 billion IoT devices are actively connected to the
Internet at the end of 2020, occupying 54% of overall online devices,
and 30 billion IoT connections are expected by 2025 [1]. The global IoT
market size has reached $250 billion in 2019 and is predicted to reach
$1463 billion by 2027 [2]. However, despite of the rapid growth of
IoT device number and market size, security has been overlooked due
to the lagging IoT security standards, inadequate investment in security
development as well as the lack of security awareness.

In recent years, extensive research efforts have been conducted to
attacks against IoT devices, including hardware attacks, operating sys-
tem (OS)/firmware attacks, and software attacks. (1) Hardware attack:
For IoT devices deployed in public places, such as surveillance cameras,
attackers can have physical access to them and leverage hardware
interfaces like universal asynchronous receiver/transmitter (UART) and
joint test action group (JTAG) interfaces to illegally tamper with the in-
ternal IoT system [3–5]. (2) OS/Firmware attack: The operating system

∗ Corresponding author.
E-mail addresses: zhenling@seu.edu.cn (Z. Ling), huaiyu_yan@seu.edu.cn (H. Yan), xinhuishao@seu.edu.cn (X. Shao), jluo@seu.edu.cn (J. Luo),

yiling.xyl@alibaba-inc.com (Y. Xu), bpearson@knights.ucf.edu (B. Pearson), xinwen_fu@uml.edu (X. Fu).

image or firmware are usually stored in flash memory for IoT devices
and can be updated through network. The contents of a flash memory
can be maliciously modified through hardware attacks and a malicious
firmware image can be used for updating [6]. (3) Software attack:
Software vulnerabilities of IoT devices, like stack overflow, command
injection, etc. [7], can be leveraged to inject malware or maliciously
modify existing programs. All of these attacks involve tampering with
IoT system software, thus damaging the integrity of the original IoT
system.

To mitigate such attacks and enforce system integrity, some research
works have leveraged virtualization techniques to conduct system run-
time execution monitoring (REM) [8,9]. These solutions rely on vir-
tual machine monitors (VMM), namely hypervisors, that may contain
vulnerabilities due to their large codebase, and can be maliciously
modified before system boot. Meanwhile, the performance overhead
introduced by the virtualization-based REM is intolerable for low-cost
IoT devices.

Compared to x86 instruction set architecture, ARM, with virtues of
energy efficiency, is more suitable for low-cost IoT devices and has
vailable online 15 July 2021
383-7621/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2021.102240
Received 30 March 2021; Received in revised form 7 July 2021; Accepted 9 July 2
021

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:zhenling@seu.edu.cn
mailto:huaiyu_yan@seu.edu.cn
mailto:xinhuishao@seu.edu.cn
mailto:jluo@seu.edu.cn
mailto:yiling.xyl@alibaba-inc.com
mailto:bpearson@knights.ucf.edu
mailto:xinwen_fu@uml.edu
https://doi.org/10.1016/j.sysarc.2021.102240
https://doi.org/10.1016/j.sysarc.2021.102240
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102240&domain=pdf

Journal of Systems Architecture 119 (2021) 102240Z. Ling et al.

R
s
S

dominated the embedded system market, especially the mobile mar-
ket [10]. Additionally, recent ARM processors provide a system-level
security solution called TrustZone [11], which provides system-level
isolation by dividing both system hardware and software resources into
two domains, namely the Secure World (SW) and the Normal World
(NW). The SW is more privileged and can be leveraged to conduct REM
on the NW.

In order to enforce a strong system integrity policy, we leverage
ARM TrustZone technology to ensure both the load-time integrity and
the runtime integrity of the IoT system.

To enforce load-time integrity, we first establish the root of trust
(RoT) based on the OCROM and eFuse. Then, we propose a hybrid
booting approach consisting of the secure boot of the SW and the
trusted boot of the NW. The secure boot involves establishing a chain of
trust (CoT) initiated from the RoT for the SW boot images to ensure the
SW load-time integrity, while the trusted boot involves measurements
of the NW boot images and a remote attestation is conducted to verify
the NW load-time integrity.

On such basis, we investigate a paging-based process integrity mea-
surement and attestation method to monitor the NW status from SW.
A periodical measurement is conducted inside the SW on the code
segments of each NW process and the measurement results are sent to a
remote attestation server. The NW runtime process integrity is verified
if the received measurement results match with some pre-calculated
reference values.

We implement a prototype system on a Freescale i.MX6Q SABRE
SD development board [12] and evaluate its effectiveness against all
these attacks. According to experimental results, our system introduces
negligible performance overhead to the original IoT system.

In summary, our contributions in this paper are listed as follows:

• We propose a hybrid booting approach based on ARM TrustZone
technology to enforce system load-time integrity.

• We investigate a paging-based process integrity measurement and
attestation method to enforce runtime process integrity.

• We implement a prototype system on a Freescale i.MX6Q SABRE
SD development board. Extensive empirical experiment results
demonstrate that our system can effectively defend and detect
different IoT attacks with little performance overhead.

The rest of this paper is organized as follows. Section 2 provides
the necessary background information on TrustZone, secure boot and
trusted boot. The system overview is presented in Section 3. The details
of the hybrid booting approach and the paging-based process integrity
measurement and attestation method are introduced in Sections 4
and 5, respectively. Section 6 evaluates the system effectiveness and
performance overhead. Related work is reviewed in Section 8. Finally,
we conclude this paper in Section 9.

2. Background

2.1. TrustZone overview

The ARM TrustZone technology [13] is a system-level security
extension to the ARM architecture since ARMv6. TrustZone divides the
system into two domains, Secure World (SW) and the Normal World
(NW), and enforces strong isolation between these worlds in terms of
both hardware and software resources.

TrustZone leverages dedicated hardware components to enforce
hardware resource isolation. An additional processor bit, Non-Secure
(NS) bit, indicates the current CPU state and is propagated through the
Advanced eXtensible Interface (AXI) system bus to the peripherals and
the memory. A peripheral can be configured as secure or non-secure
using TrustZone Protection Controller (TZPC), and a secure peripheral
can only be accessed by the SW when NS bit is cleared. Additionally,
the physical memory is separated into two isolated parts, i.e., the
2

secure memory and the non-secure memory, via TrustZone Address r
Space Controller (TZASC). The secure memory can only be accessed
by SW and any attempted access from NW is blocked, while the non-
secure memory can be accessed from both worlds. The switch between
these two worlds is accomplished via a Secure Monitor Call (SMC)
instruction.

Based on the hardware isolation mechanism provided by TrustZone,
both SW and NW run separated software suites, including different
operating systems and user-level applications. Generally, a rich OS and
client applications (CA) run in the NW while a secure OS and trusted
applications (TA) run in the SW. Programs in the SW have full access
to all system resources while programs in the NW can only access NW
resources but not those belonging to the SW. Therefore, security critical
tasks are often deployed inside the SW to be protected from an insecure
NW.

2.2. Secure boot and trusted boot

Secure boot is a mechanism that establishes a Chain of Trust (CoT)
on all system boot images. Secure boot relies on the public key cryptog-
raphy to verify image signatures before their execution [14]. A pair of
public and private key is generated for image signing and verification.
The private key is used to sign an image offline while the public key is
used to verify the image signature before one image is executed. The
whole secure boot process usually involves several images. The image
of the former boot stage verifies the image of the next boot stage, which
in turn forms a verification chain, known as the CoT. During the secure
boot, a single signature verification failure can terminate the whole
system booting process.

As for trusted boot, all system boot images are measured in each
boot stage [15]. The measurement results are accumulated to generate
a measurement list which uniquely identifies the particular firmware
images executed so far. The measurement list can be used for attesta-
tion. During trusted boot, an attestation failure will not terminate the
system, but the user may be alerted via a smart app.

Both secure boot and trusted boot anchor their trust on a root of
trust (RoT), which is inherently trusted. Therefore, the RoT is usually
established based on some invariable storage media whose content
cannot be modified once programmed.

3. System overview

In this section, we present the threat model and the basic idea of
the system design.

3.1. Threat model

We assume that attackers have physical access to IoT devices.
They can launch hardware attacks [3–5], OS/firmware attacks [6] and
software attacks [7] against IoT devices. Before the IoT devices are
powered up, the attackers can tamper with the firmware images of both
the SW and the NW stored in the flash memory. During system runtime,
the attackers can inject malware in the NW and tamper with NW
built-in programs arbitrarily. Sophisticated hardware attacks like bus
snooping attacks [16], cold boot attacks [17] and cache side channel
attacks [18] are out of the scope of this paper. We only consider the
security of the code section of a program, i.e., .𝑡𝑒𝑥𝑡.

We assume that the program in ROM is secure since the On-Chip
OM (OCROM) is read-only and difficult to tamper with. We also as-
ume that the attackers cannot compromise the run-time SW; therefore,
W code is secure from software attacks. Finally, we assume that the
emote attestation server is secure and trustworthy.

Journal of Systems Architecture 119 (2021) 102240Z. Ling et al.
Fig. 1. The hybrid booting sequence.

3.2. System design

We propose a hybrid secure and trust booting method and a process
integrity measurement and attestation method to ensure the system
load-time integrity and run-time process integrity, respectively.

The hybrid booting procedure is comprised of the secure boot of the
SW and the trusted boot of the NW. Fig. 1 illustrates the hybrid booting
sequence. On powering up, the first-stage bootloader starts to run first.
It loads the second-stage bootloader into memory, verifies its integrity
and transfers control to it after a successful signature verification. Then
the second-stage bootloader loads the rest firmware images, namely the
secure OS kernel image, the rich OS kernel image and the filesystem
image, into the memory and verifies the secure OS kernel image so as
to enforce the load-time integrity of the SW. Due to secure boot, the
integrity of the secure OS kernel is verified. Therefore, the secure OS
kernel can be treated as the trusted base for the trusted boot of the
NW. During trusted boot, the secure OS kernel measures both the rich
OS kernel image and filesystem image and then transfers control to the
rich OS. After the rich OS starts, the measurement results are sent to
the remote attestation server to verify NW load-time integrity.

After the hybrid boot, programs running in the NW provides IoT
device’s functionalities. We implement a monitoring module in the
secure OS to measure the memory pages of the code segments of
processes in the rich OS periodically. After being encrypted with a
remote attestation key, the measurement results are sent to the remote
attestation server to verify the integrity of run-time NW processes. In
this paper, this design is targeted to Linux-based IoT systems based on
TrustZone. However, the proposed technique can be revised to apply
to all kinds of IoT systems.

4. Hybrid booting approach

In this section, we first present the design of RoT and then elaborate
on the secure boot for the SW and the trusted boot for the NW.

4.1. Root of trust

As the trusted base for the hybrid boot, the RoT is first established
based on the OCROM and eFuse. The OCROM is a read-only memory
with write-protection, thus it is difficult to tamper with the codes stored
inside. In addition, the on-chip eFuse is a one-time-programmable
(OTP) electronic element, whose contents cannot be modified once
programmed. Therefore, the OCROM and the eFuse are leveraged as
the system RoT since both are immune to being tampered with. The
first-stage bootloader is stored in the OCROM, responsible for verifying
the integrity of the second-stage bootloader using a public key. The
hash of the public key is stored in the eFuse and used to verify the
public key’s integrity.

4.2. Secure boot

Secure boot is used to boot up the SW to ensure the integrity of the
SW. The secure boot for the SW involves two phases, the offline image
signing phase and the online secure boot phase.
3

Fig. 2. Secure boot processes.

4.2.1. Offline phase
The second-stage bootloader image and the secure OS kernel image

are measured and signed offline, as shown in the upper half of Fig. 2.
A hash of the second-stage bootloader image is calculated and used as
its measurement result. The private key of the second-stage bootloader
𝑃𝑅1 is used to sign the measurement result and the hash of the
corresponding public key 𝑃𝑈1 is stored in the eFuse. The second-stage
bootloader image, as well as 𝑃𝑈1 and the signature, is stored in the
flash memory. Additionally, the secure OS kernel image is measured
and signed in a similar way using another private key 𝑃𝑅2. The secure
OS kernel image, as well as its public key 𝑃𝑈2 and signature, is stored
in the flash memory while the hash of 𝑃𝑈2 is stored in the second-stage
bootloader.

4.2.2. Secure boot phase
A CoT can be established based on the first-stage bootloader. On

powering up, the first-stage bootloader acts as the trusted base of the
secure boot. It passes the control to the second-stage bootloader after
successfully loading and verifying the integrity of the second-stage
bootloader, as shown in the lower half of Fig. 2. Then, the second-stage
bootloader verifies the integrity of the secure OS kernel and attestation
CAs control to the secure OS kernel if the verification succeeds. A single
verification failure can terminate the secure boot process and in turn
the system aborts.

Let 𝑃0 be the first-stage bootloader, 𝑃1 be the second-stage boot-
loader and 𝑃2 be the secure OS kernel. The steps that 𝑃𝑖−1 verifies 𝑃𝑖
are shown as follows.

(1) 𝑃𝑖−1 locates 𝑃𝑖, as well as the attached public key and signature
of 𝑃𝑖 in the memory using the parameters passed to it.

(2) 𝑃𝑖−1 calculates the hash of the public key, and compares the
resulting hash with the one it possesses. In particular, the first-
stage bootloader uses the public key hash stored in the eFuse to
verify the public key of the second-stage bootloader. The booting
process terminates if there is a mismatch.

(3) 𝑃𝑖−1 restores the measurement result 𝑚 from the signature using
the public key.

(4) 𝑃𝑖−1 makes a fresh hash calculation on 𝑃𝑖 to obtain a new
measurement 𝑚′ and compares it with 𝑚. 𝑃𝑖 starts its execution
if 𝑚′ matches 𝑚, otherwise, the system terminates.

Once the chain of trust is established, the programs in the SW can
be trusted after a successful secure boot. Additionally, the isolation
mechanism provided by TrustZone ensures that programs in the NW
have no access to SW resources. Thus, the SW can be treated as the
trusted base for the trusted boot and provide necessary secure storage
used by the trusted boot.

Journal of Systems Architecture 119 (2021) 102240Z. Ling et al.
Fig. 3. CAAM blob structure.

4.3. Trusted boot

After the secure OS kernel gets started, trusted boot is used to boot
up the NW to ensure its integrity. The trusted boot for the NW involves
two phases: the offline hash chain calculation phase, and the online
trusted boot phase. Furthermore, the remote attestation key needs to
be securely stored in the flash memory.

4.3.1. Offline phase
We design a hash chain to measure the NW images, as shown in the

upper half of Fig. 4. The initial hash value is set to 0 (𝑉 = 0). The hash
value is updated by concatenating the current value 𝑉 and next image
𝐼 on the chain, 𝑉 = 𝐻𝑎𝑠ℎ(𝑉 ∥𝐼). The NW consists of two images: the
rich OS kernel image and the file system image. Therefore, the final
value of the hash chain is calculated as 𝑉 = 𝐻𝑎𝑠ℎ(𝐻𝑎𝑠ℎ(0∥𝐼1)∥𝐼2) and
it is stored in the remote attestation server as the reference value for
NW integrity verification.

The final hash value 𝑉 is encrypted with the remote attestation
key before being sent to the remote attestation server for NW integrity
verification. The remote attestation key is a symmetric encryption key
and is generated offline. Both the remote attestation server and the IoT
device have a copy of this key. Since the remote server is trusted, we
only consider the secure storage of the attestation key in the local IoT
device.

We design the secure key storage based on the Cryptographic Accel-
eration and Assurance Module (CAAM) module of the i.MX6Q develop-
ment board used in our design. The CAAM provides a Blob mechanism
to protect secret data across system power cycles. To this end, an on-
chip Secure Non-Volatile Storage (SNVS) can be used to provide a
256 bit Master Key (MK) for CAAM, and a Random Number Generator
(RNG) inside CAAM is used as a 256-bit blob key.

A common CAAM Blob structure consists of an encrypted Blob key,
the encrypted remote attestation key and a Message Authentication
Code (MAC) tag, as shown in Fig. 3. Since the remote attestation key
is encrypted, the Blob can be securely stored in the flash memory. The
steps to produce a Blob are explained as follows:

(1) A 256-bit random Blob Key is generated using the RNG.
(2) The remote attestation key is encrypted using AES-CCM with the

Blob Key. A MAC of the remote attestation key is also calculated
and appended to the encrypted attestation key to ensure its
integrity.

(3) CAAM derives a 256-bit Blob Key Encryption Key (BKEK) using
the MK and employs it to encrypt the Blob Key, generating the
encrypted Blob Key.

(4) The Blob is generated by concatenating these three components
and finally stored in the flash memory.

In order to prevent the NW from obtaining the remote attestation
key, the Central Security Unit (CSU) is leveraged to configure CAAM as
a secure peripheral. Accordingly, the CAAM is accessible only to the SW
and any access attempt from the NW will be blocked. In addition, the
SNVS is a secure peripheral by default. Since the remote attestation key
can only be restored and accessed in the SW, its integrity is enforced.
4

Fig. 4. Trusted boot processes.

Fig. 5. Remote attestation process.

4.3.2. Trusted boot phase
During the trusted boot phase, the secure OS kernel measures the

NW images to obtain the final hash value and starts the NW. The secure
OS kernel measures the rich OS image and the file system image using
the same offline method, as shown in the lower half of Fig. 4. After the
NW is fully booted, the final hash value is encrypted using the remote
attestation key and sent to the remote attestation server for NW load-
time integrity verification. The remote attestation key is restored from
the CAAM blob and used to encrypt the final hash value in the SW. The
encrypted hash value is sent to the remote attestation server through
the NW. There are three components involved in the remote attestation
process, including a measurement TA, an attestation CA and a remote
verifier. The remote attestation process shown in Fig. 5 is illustrated in
details as follows:

(1) The NW attestation CA establishes a TLS connection with the re-
mote verifier and requests a 𝑁𝑜𝑛𝑐𝑒 which is randomly generated
to resist replay attacks. The attestation CA passes the received
𝑁𝑜𝑛𝑐𝑒 to the measurement TA through shared memory.

(2) The measurement TA leverages CAAM to restore the remote
attestation key 𝐾 from the Blob. First, the CAAM generates
the BKEK using the MK. Then, the Blob Key is recovered by
decrypting the encrypted Blob Key via the BKEK. Finally, the
CAAM decrypts the encrypted remote attestation key with the
Blob Key to recover the remote attestation key 𝐾, and uses the
MAC to verify its integrity. The measurement TA saves 𝐾 in the
SW and the isolation mechanism provided by TrustZone ensures
that the NW has no access to it. The final hash value 𝑉 and
the 𝑁𝑜𝑛𝑐𝑒 are encrypted with 𝐾 using AES-128-CBC, i.e., 𝐸 =
𝐴𝐸𝑆 − 128 − 𝐶𝐵𝐶(𝑁𝑜𝑛𝑐𝑒∥𝑉 ,𝐾).

(3) The measurement TA sends 𝐸 to the attestation CA through
shared memory and the attestation CA sends 𝐸 to the remote
verifier through the TLS connection.

(4) The verifier uses the local stored hash value 𝑉 ′, 𝑁𝑜𝑛𝑐𝑒′, and
remote attestation key 𝐾 ′ to verify the integrity of the NW.
After decrypting 𝐸 with 𝐾 ′ to obtain the final hash 𝑉 sent from
the IoT device, the Verifier compares 𝑉 to 𝑉 ′ and 𝑁𝑜𝑛𝑐𝑒 to
𝑁𝑜𝑛𝑐𝑒′. If both match, the NW load-time integrity is verified. If
the verification of the final hash value 𝑉 fails, the NW integrity
is damaged. If the verification of 𝑁𝑜𝑛𝑐𝑒 fails, the IoT device is
under replay attacks.

Journal of Systems Architecture 119 (2021) 102240Z. Ling et al.
Fig. 6. Measurement results of the 𝑖𝑛𝑖𝑡 code segment.

5. Paging-based process integrity measurement and attestation
method

In this section, we present the basic idea of process integrity mea-
surement. Then we elaborate on the process integrity measurement
method and the process integrity remote attestation method.

5.1. Basic idea

We propose a paging-based process integrity measurement and at-
testation method to ensure the integrity of NW processes at the runtime.
Recall that the SW is trusted at the load-time and runtime as the
secure boot of the SW and TrustZone hardware isolation techniques
are applied. However, NW programs are still untrusted at the runtime
despite of the NW trusted boot, since the NW may be invaded by
attackers who can inject malware or tamper with built-in programs in
the NW. Note that, different from PC environment, after an IoT device
is deployed, the system always executes the same set of pre-installed
programs instead of installing new programs on user demand. As a
result, we can perform offline measurement on the code sections of
the pre-installed programs at the page granularity level in the NW and
store measurement results as reference values on the remote attestation
server. Then we measure the code segments of the runtime processes
residing on the memory page using a measurement TA in the SW, and
finally send the results to the remote attestation server to verify the
integrity of processes.

5.2. Offline program measurement

All of the program code are stored in the .𝑡𝑒𝑥𝑡 section of the
corresponding ELF files of the programs. However, the code is loaded
and run in the memory in terms of the paging mechanism. Therefore,
the .𝑡𝑒𝑥𝑡 sections of all NW programs can be divided into several
segments in terms of a page size (i.e., 4 KB) offline. The hash values
of each segment are calculated and saved on the attestation server as
the reference values to verify the integrity of NW processes.

We take the first user-level process (i.e., 𝑖𝑛𝑖𝑡) as an example. The
size of its code segment is of 0x6844 bytes, occupying 7 pages in terms
of a 4 KB page size. The last part that cannot occupy one full page
is handled in accordance with its actual size. A SHA256 hash of each
page is calculated, generating 7 structures of {𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑛𝑎𝑚𝑒, 𝑝𝑎𝑔𝑒ℎ𝑎𝑠ℎ},
as shown in Fig. 6. The {𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑛𝑎𝑚𝑒, 𝑝𝑎𝑔𝑒ℎ𝑎𝑠ℎ} structures of all NW
ELF files are calculated and saved in a hash table on the attestation
server as the reference for process integrity verification.

5.3. Runtime process integrity measurement

The SW measurement TA measures the code segment of each pro-
cess periodically in the memory. After encrypting the measurement
results with the remote attestation key, the measurement TA sends
them to the attestation server that verifies the runtime process integrity.

In Linux, processes are managed using the process descriptor
𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 shown in Fig. 7. Each 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 manages one process
and contains all information of that process, including process ID,
5

Fig. 7. Linux 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 and 𝑚𝑚_𝑠𝑡𝑟𝑢𝑐𝑡.

process name, address space, etc. All 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡s are organized as a
doubly-linked list by the field 𝑡𝑎𝑠𝑘𝑠. The virtual address of process 0’s
𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡, named 𝑖𝑛𝑖𝑡_𝑡𝑎𝑠𝑘, is stored in the kernel symbol table file,
i.e., 𝑆𝑦𝑠𝑡𝑒𝑚.𝑚𝑎𝑝. Starting from 𝑖𝑛𝑖𝑡_𝑡𝑎𝑠𝑘, all 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡s can be traversed
and the information of all processes can be collected. The field 𝑚𝑚 of
𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 points to a memory descriptor 𝑚𝑚_𝑠𝑡𝑟𝑢𝑐𝑡 which is used to
manage the virtual address space of a process. The fields 𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑑𝑒 and
𝑒𝑛𝑑_𝑐𝑜𝑑𝑒 describe the starting and ending address of the process code
segment respectively and can be used to locate the code segment of a
process in the memory.

Since the SW and NW have different virtual memory address spaces,
the NW virtual addresses should be translated into physical addresses.
Then these physical addresses are mapped to SW virtual addresses.
Linux divides a process’ virtual address space into two parts, i.e, the
kernel space and the user space. The kernel space uses the linear
address translation method. There is a fixed interval 𝑣𝑎2𝑝𝑎_𝑜𝑓𝑓𝑠𝑒𝑡
between a kernel space virtual address 𝑣𝑎_𝑘𝑒𝑟𝑛𝑒𝑙 and its corresponding
physical address 𝑝𝑎_𝑘𝑒𝑟𝑛𝑒𝑙, as shown in Eq. (1).

𝑝𝑎_𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑣𝑎_𝑘𝑒𝑟𝑛𝑒𝑙 − 𝑣𝑎2𝑝𝑎_𝑜𝑓𝑓𝑠𝑒𝑡 (1)

The user space conducts address translation using paging. The field
𝑝𝑔𝑑 of 𝑚𝑚_𝑠𝑡𝑟𝑢𝑐𝑡 points to the base address of the page table. A user
space virtual address 𝑣𝑎_𝑢𝑠𝑒𝑟 can be translated to its corresponding
physical address 𝑝𝑎_𝑢𝑠𝑒𝑟 through page table walk 𝑝𝑎𝑔𝑒_𝑡𝑎𝑏𝑙𝑒_𝑤𝑎𝑙𝑘, as
shown in Eq. (2).

𝑝𝑎_𝑢𝑠𝑒𝑟 = 𝑝𝑎𝑔𝑒_𝑡𝑎𝑏𝑙𝑒_𝑤𝑎𝑙𝑘(𝑝𝑔𝑑, 𝑣𝑎_𝑢𝑠𝑒𝑟) (2)

The secure OS uses one-level paging structure to manage the SW
memory space. A physical address 𝑝𝑎 is mapped into the SW virtual
address space using Eq. (3).

𝑣𝑎 = 𝑝𝑎𝑔𝑒_𝑡𝑎𝑏𝑙𝑒(𝑝𝑎) (3)

The SW measurement TA traverses the code segments of all NW
processes starting from 𝑖𝑛𝑖𝑡_𝑡𝑎𝑠𝑘. Since both 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 and 𝑚𝑚_𝑠𝑡𝑟𝑢𝑐𝑡
are in the NW kernel space, the measurement TA obtains the physical
address of 𝑖𝑛𝑖𝑡_𝑡𝑎𝑠𝑘 according to Eq. (1) and maps the physical address
into the SW virtual address space using Eq. (3) to parse the structure of
process 0’s 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡. The 𝑡𝑎𝑠𝑘𝑠 field of process 0’s 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 points to
that of process 1’s, i.e., the 𝑖𝑛𝑖𝑡 process. Afterwards, the physical address
corresponding to the 𝑡𝑎𝑠𝑘𝑠 field of 𝑖𝑛𝑖𝑡’s 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 can be obtained
according to Eq. (1). Then, the physical address of 𝑖𝑛𝑖𝑡’s 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 is
calculated based on the 𝑡𝑎𝑠𝑘𝑠’s offset inside 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡.

After obtaining the physical address of 𝑖𝑛𝑖𝑡’s 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡, the mea-
surement TA reads its code segment as shown in Fig. 8, and the steps
are as follows:

Journal of Systems Architecture 119 (2021) 102240Z. Ling et al.
Fig. 8. Measuring pages of NW process code segments.

(1) The measurement TA maps the physical address of 𝑖𝑛𝑖𝑡’s
𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 into the SW virtual address space using Eq. (3)
and obtains the 𝑚𝑚 field in accordance with the structure of
𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡. Note that the obtained 𝑚𝑚 contains the NW virtual
address of 𝑖𝑛𝑖𝑡’s 𝑚𝑚_𝑠𝑡𝑟𝑢𝑐𝑡.

(2) The measurement TA obtains the physical address of 𝑖𝑛𝑖𝑡’s
𝑚𝑚_𝑠𝑡𝑟𝑢𝑐𝑡 according to Eq. (1).

(3) The physical address of 𝑖𝑛𝑖𝑡’s 𝑚𝑚_𝑠𝑡𝑟𝑢𝑐𝑡 is transformed to the
corresponding SW virtual address according to Eq. (3). The
measurement TA obtains 𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑑𝑒, 𝑒𝑛𝑑_𝑐𝑜𝑑𝑒, and 𝑝𝑔𝑑 from
𝑚𝑚_𝑠𝑡𝑟𝑢𝑐𝑡. Note that the obtained pointers also contain NW
virtual addresses.

(4) According to 𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑑𝑒 and 𝑒𝑛𝑑_𝑐𝑜𝑑𝑒 as well as the page size,
the measurement TA calculates the number of pages the 𝑖𝑛𝑖𝑡
process’s code segment occupies and the starting NW virtual
address of each page. The physical address of 𝑖𝑛𝑖𝑡’s page table
can be located using 𝑝𝑔𝑑. Since the code segment of 𝑖𝑛𝑖𝑡 is in the
NW user space, the virtual address of each page is transformed
to its corresponding physical address according to Eq. (2). Be-
sides, the measurement TA determines whether a page currently
resides in the physical memory according to the 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 bit of
its corresponding page table entry.

(5) The physical address of each page is transformed to the cor-
responding SW virtual address according to Eq. (3) and the
measurement TA reads and measures the content of each page.

The SHA256 hash values of pages in the memory are calculated
and concatenated to form a measurement result 𝑀 of one process.
The format of the result 𝑀 is ‘‘##process name##number of page
hashes##page hash 1, page hash 2, page hash 3, . . . , page hash 𝑛’’.

5.4. Process integrity attestation

The NW process measurement results generated by the SW mea-
surement TA are used as the attestation information and forwarded to
the remote verifier by the NW attestation CA for NW process integrity
remote attestation, as shown in Fig. 9. We design a protocol for the
remote attestation. The detailed workflow is illustrated as follows.

(1) The IoT device requests a 𝑁𝑜𝑛𝑐𝑒 from the remote verifier. After
establishing a TLS connection to the remote verifier, the NW
attestation CA requests a 𝑁𝑜𝑛𝑐𝑒 from the verifier and passes it to
the SW measurement TA. The measurement TA makes a secure
copy of the 𝑁𝑜𝑛𝑐𝑒 in the SW memory.

(2) The measurement TA reads the memory pages of the 𝑖th NW
process’ code segment and calculates its measurement 𝑀 .
6

𝑖

Fig. 9. NW process integrity remote attestation.

(3) The measurement TA encrypts the attestation information. 𝑀𝑖
and 𝑁𝑜𝑛𝑐𝑒 are encrypted with the remote attestation key 𝐾 used
in the trusted boot phase. Then we can obtain the ciphertext
𝐸𝑖 = 𝐴𝐸𝑆 − 128 − 𝐶𝐵𝐶(𝑁𝑜𝑛𝑐𝑒∥𝑀𝑖, 𝐾).

(4) The measurement TA passes the ciphertext 𝐸𝑖 to the attestation
CA. The measurement TA obtains the next 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 and if it
corresponds to process 0, the measurement TA will execute step
5, otherwise jump back to step 2.

(5) The attestation CA sends the ciphertext set 𝐸 = {𝐸1, 𝐸2,… , 𝐸𝑛}
to the verifier through the TLS connection.

(6) The verifier uses the remote attestation key to decrypt the ci-
phertext set 𝐸 = {𝐸1, 𝐸2,… , 𝐸𝑛}, and obtains 𝑁𝑜𝑛𝑐𝑒 and the
measurement result 𝑀𝑖 of each process. After the 𝑁𝑜𝑛𝑐𝑒 is
verified successfully, the verifier restructures 𝑀𝑖 to a series
of {𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑛𝑎𝑚𝑒, 𝑝𝑎𝑔𝑒ℎ𝑎𝑠ℎ} pairs. Each {𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑛𝑎𝑚𝑒, 𝑝𝑎𝑔𝑒ℎ𝑎𝑠ℎ}
pair is searched in the hash table generated offline. If one pair
can be found, the integrity of the corresponding page is verified.
Otherwise, the verifier tries to search for the process name in
the hash table. If the process name is in the hash table, it
indicates that a pre-installed program has been tampered with,
and if there is no match for the process name, it indicates
that a new malicious process exists. Only if all pages are veri-
fied successfully, the runtime NW process integrity verification
passes.

6. Evaluation

In this section, we first present the experimental setup, and then
evaluate the effectiveness and performance of our system.

6.1. Experimental setup

We implement a trusted air quality monitoring prototype on a
Freescale i.MX6Q SABRE SD development board, as shown in Fig. 10.
The prototype senses the surrounding air quality status, i.e., particulate
matter (PM2.5) levels, and acts as an MQTT client to publish the
resulting statistics to an MQTT broker running on a remote server, as
shown in Fig. 11. We implement and deploy the remote server in a PC
running Ubuntu 14.04 LTS and develop an Android app to subscribe
the air quality statistics from the server.

Besides, a secure boot module and a trusted boot module are imple-
mented in the second-stage bootloader and the secure OS, respectively.
A runtime process integrity measurement TA and attestation CA is
developed and deployed in the SW and NW, respectively. Without loss
of generality, the remote server is also used for remote attestation and
the load-time and runtime integrity information is sent to the Android
app so as to inform the user of the system status of the IoT system.

Journal of Systems Architecture 119 (2021) 102240Z. Ling et al.
Fig. 10. Trusted air quality monitoring prototype.

Fig. 11. Air quality monitoring prototype architecture.

6.2. Effectiveness

The evaluation of the secure boot process in the SW is aimed to
verify whether the second-stage bootloader can detect any violation if
the image of the secure OS, the public key, or the signature is tampered
with. In the experiments, four different secure OS images are evaluated:
an intact one, one with a tampered secure OS, one with a tampered
public key, and one with a tampered signature. Only the intact image
can boot successfully, while the others fail to boot up due to verification
errors. The results show that the secure boot can enforce the load-time
integrity of the SW.

The evaluation of the trusted boot process in the NW is aimed to
verify whether our prototype can report the abnormal system status to
the attestation server if the rich OS or the filesystem image is tampered
with. After we tamper with the rich OS or the filesystem image, our
prototype can boot up and function normally without being shut down
by force. However, the remote attestation server has already detected
the abnormal system status which can be sent to the user informing
that the device is not trusted any more. The results show that by use of
the trusted boot in the NW, even if NW images are tampered with, the
NW programs can be executed, while the abnormal system status can
be verified by the remote attestation server.

We assess the runtime process integrity measurement and attesta-
tion so as to verify whether our prototype can detect a newly-inserted
malware or a tampered pre-installed program in the NW. We insert a
malware into the NW. After the malware starts, the attestation server
detects the malware and shows its name. Furthermore, we tamper
with the code segment of a pre-installed program 𝑠𝑒𝑟𝑖𝑎𝑙_𝑎𝑟𝑚 in the
NW. After restarting 𝑠𝑒𝑟𝑖𝑎𝑙_𝑎𝑟𝑚, the attestation server indicates that
a pre-installed program is tampered with. The results show that the
paging-based process integrity measurement and attestation method
can enforce runtime process integrity of the NW.
7

6.3. Performance

The performance evaluation of the hybrid boot is designed to mea-
sure the consumed time during the secure boot and trusted boot. We
record the time consumed by both the secure boot module and the
trusted boot module as well as the total booting time of second-stage
bootloader and the secure OS, respectively. We conduct the timing
measurement of the hybrid booting process for 30 times and take
the average of the time. As the results shown in Table 1, the secure
boot module introduces little overhead in the second-stage bootloader.
Also, the trusted boot module slows down the secure OS booting
process dramatically. The reason is that the filesystem image has a total
size of 107 MB, and it takes a lot of time measuring it. Under real
circumstances, the filesystem image can be compressed down to less
than 1 MB, which can erase such performance bottleneck. In addition,
a total booting time of approximate 9.2 s is tolerable in terms of user
experience.

We evaluate the performance overhead introduced by the mea-
surement TA and attestation CA in the paging-based process integrity
measurement and attestation method. We use LMBench [19] to eval-
uate the system performance. In the experiments, we measure and
compare the execution time of various Linux system services with
the measurement TA and attestation CA enabled and disabled. We
continuously call each system service for 1000 times, the call interval of
each system service is 250 ms, and the whole performance evaluation
lasts about 30 min. As shown in Table 2, when the measurement TA
and attestation CA are enabled, the delay introduced to the evaluated
services fluctuates between −0.55% and +0.67%. The results show
that our the measurement TA and attestation CA introduce negligible
performance overhead to the original system, and it is feasible to
actually deploy our prototype system. Note that the time interval of NW
process integrity measurement event is determined based on the trade-
off between performance and security. Due to the limited computing
resources of IoT devices, frequent measurement events will jeopardize
the whole system performance. Additionally, a period adaptation way
can be taken to actively adjust the measurement time interval at the
runtime [20].

7. Security analysis and limitations

This section conducts security analysis on both the hybrid booting
approach and the paging-based process integrity measurement and
attestation method and discusses their limitations.

7.1. The hybrid booting approach

The hybrid booting approach ensures that the system starts from
a legal state. The root of trust in our hybrid booting approach is
established based on the eFuse and OCROM which are tamper-proof.
Starting from the RoT, a chain of trust is established through the secure
boot phase and a single image verification failure will terminate the
whole booting process. After a successful secure boot, the SW measures
the NW images and the measurement results are used for remote
attestation. If the NW images are maliciously modified by an attacker,
the remote attestation will fail and the user is alerted. Therefore, any
offline modification to both the SW and the NW images will be detected
and the system can only be in normal operation after a successful
hybrid boot.

7.2. The paging-based process integrity measurement and attestation method

Both the SW measurement TA and the measurement results are
secure from the NW. The secure boot ensures that only pre-installed
SW programs will run inside the SW. Base on the hardware isolation
mechanism provided by TrustZone, the SW measurement TA cannot
be compromised by the NW. Additionally, the measurement results are

Journal of Systems Architecture 119 (2021) 102240Z. Ling et al.
Table 1
Results of hybrid boot performance evaluation.

Secure/trusted boot module booting time (ms) Total booting time (ms) Ratio (%)

Second-stage bootloader 23.7 6430.0 0.37
Secure OS 1276.0 2863.0 44.57
Table 2
Results of LMBench performance evaluation.

System service Program integrity measurement and data transfer OFF (μs) Program Integrity Measurement and Data Transfer ON (μs) Difference (%)

null syscall 0.4230 0.4253 +0.54
open/close 10.1292 10.1865 +0.57
pagefault 1.2594 1.2678 +0.67
signal handler install 1.1063 1.1082 +0.17
fork+exit 1159.5902 1153.2701 −0.55
fork+exec 3410.6390 3405.9838 −0.14
select(250fd) 16.4555 16.4623 +0.04
encrypted inside the SW and then forwarded to the NW for network
transmission. Only the SW and the remote attestation server have
access to the decryption key and the NW can never get the plaintext.

Our measurement method now relies on the integrity of NW Linux
paging structure and process management kernel objects,
i.e., task_structs. Therefore, our method is vulnerable to malware ca-
pable of self-hiding, for example, transient rootkits [21]. Meanwhile,
the semantic gap issue involved in all REM projects is still an open re-
search topic [22] and existing TrustZone-based approaches can provide
security protection for such kernel objects [16,23]. We plan to dedicate
these semantic invariant protection topics to our future work.

8. Related work

8.1. Research and application of TrustZone

TrustZone is researched and widely deployed on different com-
puting devices, including mobile devices and IoT devices. (1) Mobile
Devices. Most ARM-based mobile devices are protected by TrustZone-
based TEE, such as smart phones produced by Apple, Samsung [24],
Huawei [25], Xiaomi, etc. (2) IoT Devices. TrustZone is used to protect
IoT smart devices. For example, Ukil et al. [26] proposed to provide
data security for IoT devices based on the TrustZone isolation mecha-
nism. TrustShadow [27] leverages TrustZone to protect programs from
untrusted Rich OSes. The program is placed in the SW to be isolated
from the Rich OS. Its requests for OS services are forwarded to the Rich
OS and the returning results are verified by TrustShadow. Recently,
TrustZone is leveraged to realize real-time communication for hybrid
dual-OS systems [28].

8.2. System load-time integrity verification

System load-time integrity verification techniques, e.g., secure boot
and trusted boot, are employed to defend offline firmware tamper-
ing attacks. Both secure boot and trusted boot require offline sys-
tem integrity measurement before system usage [29] and verify each
component step by step from the root of trust forming a chain of trust.

The hardware-based RoT has the virtues of stability, reliability and
small attack surfaces and therefore is preferred over the software-
based ones [15]. For example, NXP’s i.MX 6 series applications pro-
cessors implement High Assurance Boot (HAB) with boot ROM and
eFuse as the ROT [30]. Trusted Platform Module (TPM) [31], Mobile
Trusted Module (MTM) [32], Battery Backup Random Access Memory
(BBRAM) [33] can be leveraged to implement hardware-based RoTs.
The fingerprint of on-chip Static Random Access Memory (SRAM) can
be used to restore the seed for device key generation and thus provide
RoT for TrustZone SW [34].
8

8.3. System runtime integrity verification

System runtime integrity verification is widely deployed to detect
malicious or abnormal behaviors in computer systems, such as malware
injection and modification of pre-installed programs. For instance,
DRIVE [35] verifies the integrity of processes by comparing the mem-
ory image of the process with the corresponding executable binary
image. Chang et al. [9] propose a page-based process integrity veri-
fication method by measuring the pages of one executable program’s
code segment in a virtual machine. Upon each page fault triggered
by demand paging, the missing page is measured and its integrity
is verified before it is loaded into memory. Wang et al. [36] pro-
pose a data integrity detection method based on edge computing [37]
where self-balancing binary search trees are leveraged to accelerate
the data auditing process in the cloud. Recently, machine learning
technologies have been leveraged to detect malware [38] and software
vulnerabilities [39].

Hardware-based process integrity measurement and attestation have
been widely researched. For example, Hristozov et al. [40] propose a
Device Identity Composition Engine (DICE)-based system runtime in-
tegrity verification method for lightweight MCU-powered IoT devices.
Wang et al. [41] propose a hardware-based Instruction Stream Integrity
Checker(ISIC) to measure the integrity of instruction blocks during
program execution. Wehbe et al. [42] propose to connect a target em-
bedded device to an external hardware monitor. The hardware monitor
is responsible for measuring the pages of the target system’s processes
and comparing the measurement results with the pre-calculated ones
stored in its secure storage.

9. Conclusion

This paper designs a hybrid booting approach consisting of both
secure boot and trusted boot to enforce the IoT system load-time
integrity. On this basis, the paging-based runtime process integrity
measurement and attestation method is designed and implemented.
The trusted SW measures and verifies process integrity of the NW to
enforce the runtime process integrity of the system. An IoT prototype
system is implemented on an IMX6Q SABRE SD development board.
Extensive evaluations are performed to demonstrate the effectiveness
of the system.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Journal of Systems Architecture 119 (2021) 102240Z. Ling et al.
Acknowledgments

This research was supported in part by National Key R&D Program
of China 2018YFB0803400, 2018YFB2100300 and 2017YFB1003000,
US National Science Foundation (NSF) Awards 1643835, 1931871,
and 1915780, US Department of Energy (DOE) Award DE-EE0009152,
National Natural Science Foundation of China Grant Nos. 62022024,
61972088, 61632008, 62072103, 62072102, 62072098, 61972083,
and 62061146001, Jiangsu Provincial Natural Science Foundation for
Excellent Young Scholars Grant Nos. BK20190060, Jiangsu Provin-
cial Key Laboratory of Network and Information Security Grant Nos.
BM2003201, Key Laboratory of Computer Network and Information
Integration of Ministry of Education of China Grant Nos. 93K-9, Col-
laborative Innovation Center of Novel Software Technology and Indus-
trialization. Any opinions, findings, conclusions, and recommendations
in this paper are those of the authors and do not necessarily reflect the
views of the funding agencies.

References

[1] State of the IoT 2020: 12 billion IoT connections, surpassing non-IoT for
the first time, 2020, https://iot-analytics.com/state-of-the-iot-2020-12-billion-
iot-connections-surpassing-non-iot-for-the-first-time/.

[2] Internet of Things (IoT) market size, share & covid-19 impact analy-
sis, 2020, https://www.fortunebusinessinsights.com/industry-reports/internet-of-
things-iot-market-100307. (Accessed July 2020).

[3] J. Wurm, K. Hoang, O. Arias, A.-R. Sadeghi, Y. Jin, Security analysis on consumer
and industrial IoT devices, in: Proceedings of 21st Asia and South Pacific
Design Automation Conference, ASP-DAC, Macao, Macao, pp. 519–524. [Online].
Available: https://doi.org/10.1109/ASPDAC.2016.7428064.

[4] O. Arias, J. Wurm, K. Hoang, Y. Jin, Privacy and security in Internet of Things
and wearable devices, IEEE Trans. Multi Scale Comput. Syst. 1 (2) (2015)
99–109, http://dx.doi.org/10.1109/TMSCS.2015.2498605.

[5] G. Hernandez, O. Arias, D. Buentello, Y. Jin, Smart nest thermostat: A smart spy
in your home, in: Proceedings of the 17th Black Hat USA, Las Vegas, USA, 2014.

[6] K. Liu, M. Yang, Z. Ling, H. Yan, Y. Zhang, X. Fu, W. Zhao, On manually reverse
engineering communication protocols of linux based IoT systems, IEEE Internet
Things J. (2020).

[7] Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, X. Fu, Security vulnerabilities of Internet
of Things: A case study of the smart plug system, IEEE Internet of Things J. 4
(6) (2017) 1899–1909, http://dx.doi.org/10.1109/JIOT.2017.2707465.

[8] X. Jiang, X. Wang, D. Xu, Stealthy malware detection through vmm-based ‘‘out-
of-the-box’’ semantic view reconstruction, in: P. Ning and S.D.C. di Vimercati and
P.F. Syverson (Ed.), Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS, Alexandria, Virginia, USA, 2007, pp. 128–138.
[Online]. Available: https://doi.org/10.1145/1315245.1315262.

[9] C. Chang, X. Chen, S. Wang, Q. Xiao, Research on dynamic integrity measure-
ment model based on memory paging mechanism, Discrete Dyn. Nat. Soc. 2014
(2014).

[10] How arm came to dominate the mobile market, 2021, https://www.techspot.
com/article/1989-arm-inside/. (Accessed March 2021).

[11] Arm ltd. arm trustzone technology, 2020, https://developer.arm.com/ip-
products/security-ip/trustzone. (Accessed November 2020).

[12] RD-IMX6Q-SABRE: Sabre board for smart devices based on the i.MX 6quad
applications processors, 2020, https://www.nxp.com/design/development-
boards/i-mx-evaluation-and-development-boards/sabre-board-for-smart-
devices-based-on-the-i-mx-6quad-applications-processors:RD-IMX6Q-SABRE.
(Accessed November 2020).

[13] Arm ltd. ARM security technology. Building a secure system using
trustzone® technology, 2020, https://documentation-service.arm.com/static/
5f1ffa25bb903e39c84d7e98?token=. (Accessed November 2020).

[14] i.MX secure boot on HABv4 supported devices, 2020, https://www.nxp.com/
docs/en/application-note/AN4581.pdf. (Accessed November 2020).

[15] B. Parno, J.M. McCune, A. Perrig, Bootstrapping trust in commodity computers,
in: Proceedings of the 31st IEEE Symposium on Security and Privacy, S&P,
Berleley/Oakland, California, USA, 2010, pp. 414–429. [Online]. Available: https:
//doi.org/10.1109/SP.2010.32.

[16] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, B.B. Kang, Vigilare: Toward snoop-
based kernel integrity monitor, in: T. Yu and G. Danezis and V. D. Gligor (Ed.),
Proceedings of the 19th ACM Conference on Computer and Communications
Security, CCS, Raleigh, NC, USA, 2012, pp. 28–37. [Online]. Available: https:
9

//doi.org/10.1145/2382196.2382202.
[17] J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandrino,
A.J. Feldman, J. Appelbaum, E.W. Felten, Lest we remember: Cold-boot attacks
on encryption keys, Commun. ACM 52 (5) (2009) 91–98, http://dx.doi.org/10.
1145/1506409.1506429.

[18] N. Zhang, K. Sun, D. Shands, W. Lou, Y.T. Hou, TruSense: Information leakage
from TrustZone, in: Proceedings of the 37th IEEE Conference on Computer
Communications, INFOCOM, Honolulu, HI, USA, 2018, pp. 1097–1105. [Online].
Available: https://doi.org/10.1109/INFOCOM.2018.8486293.

[19] L.W. McVoy, C. Staelin, lmbench: Portable tools for performance analysis, in:
Proceedings of the USENIX Annual Technical Conference, San Diego, California,
USA, 1996, pp. 279–294.

[20] X. Dai, A. Burns, Period adaptation of real-time control tasks with fixed-priority
scheduling in cyber-physical systems, J. Syst. Archit. 103 (2020) 101691, http:
//dx.doi.org/10.1016/j.sysarc.2019.101691.

[21] S. Wan, J. Sun, K. Sun, N. Zhang, Q. Li, SATIN: A secure and trustworthy
asynchronous introspection on multi-core ARM processors, in: Proceedings of
49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN, Portland, OR, USA, 2019, pp. 289–301. [Online]. Available:
https://doi.org/10.1109/DSN.2019.00040.

[22] B. Jain, M.B. Baig, D. Zhang, D.E. Porter, R. Sion, SoK: Introspections on trust
and the semantic gap, in: Proceedings of the 35th IEEE Symposium on Security
and Privacy, S&P, Berkeley, CA, USA, 2014, pp. 605–620. [Online]. Available:
https://doi.org/10.1109/SP.2014.45.

[23] H. Lee, H. Moon, I. Heo, D. Jang, J. Jang, K. Kim, Y. Paek, B.B. Kang, KI-
Mon ARM: A hardware-assisted event-triggered monitoring platform for mutable
kernel object, IEEE Trans. Dependable Secur. Comput. 16 (2) (2019) 287–300,
http://dx.doi.org/10.1109/TDSC.2017.2679710.

[24] Secure, deploy and manage with knox suite, 2020, https://www.samsungknox.
com/en. (Accessed November 2020).

[25] Huawei, privacy protection, 2020, https://www.huawei.com/en/sustainability/
stable-secure-network/privacy-protection. (Accessed November 2020).

[26] A. Ukil, J. Sen, S. Koilakonda, Embedded security for Internet of Things, in: Pro-
ceedings of the 2nd National Conference on Emerging Trends and Applications
in Computer Science, St. Anthony’s College, Shillong, Meghalaya, 2011, pp. 1–6.

[27] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, T. Jaeger, TrustShadow: Secure
execution of unmodified applications with ARM TrustZone, in: Proceedings of
the 15th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys, Niagara Falls, NY, USA, 2017, pp. 488–501. [Online].
Available: https://doi.org/10.1145/3081333.3081349.

[28] P. Dong, Z. Jiang, A. Burns, Y. Ding, J. Ma, Build real-time communication for
hybrid dual-os system, J. Syst. Archit. 107 (2020) 101774, http://dx.doi.org/10.
1016/j.sysarc.2020.101774.

[29] M. Gasser, A. Goldstein, C. Kaufman, B. Lampson, The digital distributed system
security architecture, in: Proceedings of the 12th National Computer Security
Conference, 1989, pp. 305–319.

[30] AN4581 i.MX secure boot on HABv4 supported devices, 2020, https://www.nxp.
com/docs/en/application-note/AN4581.pdf. (Accessed November 2020).

[31] A. Tomlinson, Introduction to the TPM, in: Smart Cards, Tokens, Security and
Applications, second ed., 2017, pp. 173–191.

[32] J.-E. Ekberg, Mobile trusted module (MTM)–An introduction, 2007.
[33] J.G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S.W. Smith, S.H.

Weingart, Building the IBM 4758 secure coprocessor, Computer 34 (10) (2001)
57–66, http://dx.doi.org/10.1109/2.955100.

[34] S. Zhao, Q. Zhang, G. Hu, Y. Qin, D. Feng, Providing root of trust for ARM Trust-
Zone using on-chip SRAM, in: Proceedings of the 4th International Workshop on
Trustworthy Embedded Devices, TrustED, Scottsdale, Arizona, USA, 2014, pp.
25–36. [Online]. Available: https://doi.org/10.1145/2666141.2666145.

[35] A. Rein, DRIVE: Dynamic runtime integrity verification and evaluation, in:
Proceedings of the 2017 ACM on Asia Conference on Computer and Communi-
cations Security, AsiaCCS, Abu Dhabi, United Arab Emirates, 2017, pp. 728–742.
[Online]. Available: https://doi.org/10.1145/3052973.3052975.

[36] T. Wang, Y. Mei, X. Liu, J. Wang, H.-N. Dai, Z. Wang, Edge-based auditing
method for data security in resource-constrained Internet of Things, J. Syst.
Archit. 114 (2021) 101971, http://dx.doi.org/10.1016/j.sysarc.2020.101971.

[37] T. Wang, Y. Lu, J. Wang, H.-N. Dai, X. Zheng, W. Jia, EIHDP: Edge-intelligent
hierarchical dynamic pricing based on cloud-edge-client collaboration for IoT
systems, IEEE Trans. Comput. (2021) 1, http://dx.doi.org/10.1109/TC.2021.
3060484.

[38] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, K. Ren, Android
HIV: A study of repackaging malware for evading machine-learning detection,
IEEE Trans. Inf. Forensics Secur. 15 (2020) 987–1001, http://dx.doi.org/10.
1109/TIFS.2019.2932228.

[39] G. Lin, S. Wen, Q.-L. Han, J. Zhang, Y. Xiang, Software vulnerability detection
using deep neural networks: A survey, Proc. IEEE 108 (10) (2020) 1825–1848,

http://dx.doi.org/10.1109/JPROC.2020.2993293.

https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://doi.org/10.1109/ASPDAC.2016.7428064
http://dx.doi.org/10.1109/TMSCS.2015.2498605
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb6
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb6
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb6
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb6
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb6
http://dx.doi.org/10.1109/JIOT.2017.2707465
https://doi.org/10.1145/1315245.1315262
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb9
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb9
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb9
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb9
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb9
https://www.techspot.com/article/1989-arm-inside/
https://www.techspot.com/article/1989-arm-inside/
https://www.techspot.com/article/1989-arm-inside/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/sabre-board-for-smart-devices-based-on-the-i-mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/sabre-board-for-smart-devices-based-on-the-i-mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/sabre-board-for-smart-devices-based-on-the-i-mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/sabre-board-for-smart-devices-based-on-the-i-mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/sabre-board-for-smart-devices-based-on-the-i-mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://documentation-service.arm.com/static/5f1ffa25bb903e39c84d7e98?token=
https://documentation-service.arm.com/static/5f1ffa25bb903e39c84d7e98?token=
https://documentation-service.arm.com/static/5f1ffa25bb903e39c84d7e98?token=
https://www.nxp.com/docs/en/application-note/AN4581.pdf
https://www.nxp.com/docs/en/application-note/AN4581.pdf
https://www.nxp.com/docs/en/application-note/AN4581.pdf
https://doi.org/10.1109/SP.2010.32
https://doi.org/10.1109/SP.2010.32
https://doi.org/10.1109/SP.2010.32
https://doi.org/10.1145/2382196.2382202
https://doi.org/10.1145/2382196.2382202
https://doi.org/10.1145/2382196.2382202
http://dx.doi.org/10.1145/1506409.1506429
http://dx.doi.org/10.1145/1506409.1506429
http://dx.doi.org/10.1145/1506409.1506429
https://doi.org/10.1109/INFOCOM.2018.8486293
http://dx.doi.org/10.1016/j.sysarc.2019.101691
http://dx.doi.org/10.1016/j.sysarc.2019.101691
http://dx.doi.org/10.1016/j.sysarc.2019.101691
https://doi.org/10.1109/DSN.2019.00040
https://doi.org/10.1109/SP.2014.45
http://dx.doi.org/10.1109/TDSC.2017.2679710
https://www.samsungknox.com/en
https://www.samsungknox.com/en
https://www.samsungknox.com/en
https://www.huawei.com/en/sustainability/stable-secure-network/privacy-protection
https://www.huawei.com/en/sustainability/stable-secure-network/privacy-protection
https://www.huawei.com/en/sustainability/stable-secure-network/privacy-protection
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb26
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb26
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb26
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb26
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb26
https://doi.org/10.1145/3081333.3081349
http://dx.doi.org/10.1016/j.sysarc.2020.101774
http://dx.doi.org/10.1016/j.sysarc.2020.101774
http://dx.doi.org/10.1016/j.sysarc.2020.101774
https://www.nxp.com/docs/en/application-note/AN4581.pdf
https://www.nxp.com/docs/en/application-note/AN4581.pdf
https://www.nxp.com/docs/en/application-note/AN4581.pdf
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb31
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb31
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb31
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb32
http://dx.doi.org/10.1109/2.955100
https://doi.org/10.1145/2666141.2666145
https://doi.org/10.1145/3052973.3052975
http://dx.doi.org/10.1016/j.sysarc.2020.101971
http://dx.doi.org/10.1109/TC.2021.3060484
http://dx.doi.org/10.1109/TC.2021.3060484
http://dx.doi.org/10.1109/TC.2021.3060484
http://dx.doi.org/10.1109/TIFS.2019.2932228
http://dx.doi.org/10.1109/TIFS.2019.2932228
http://dx.doi.org/10.1109/TIFS.2019.2932228
http://dx.doi.org/10.1109/JPROC.2020.2993293

Journal of Systems Architecture 119 (2021) 102240Z. Ling et al.
[40] S. Hristozov, J. Heyszl, S. Wagner, G. Sigl, Practical runtime attestation for tiny
iot devices, in: Proceedings of the 2018 Workshop on Decentralized IoT Security
and Standards, San Diego, CA, USA, vol. 18, 2018.

[41] X. Wang, W. Wang, B. Xu, P. Du, L. Li, M. Liu, A fine-grained hardware security
approach for runtime code integrity in embedded systems, J.UCS 24 (4) (2018)
515–536.

[42] T. Wehbe, V.J.M. III, D.C. Keezer, Hardware-based run-time code integrity in
embedded devices, Cryptography 2 (3) (2018) 20, http://dx.doi.org/10.3390/
cryptography2030020.

Zhen Ling received the B.S. degree (2005) and Ph.D. degree
(2014) in Computer Science from Nanjing Institute of Tech-
nology, China and Southeast University, China, respectively.
He is an associate professor in the School of Computer Sci-
ence and Engineering, Southeast University, Nanjing, China.
He won ACM China Doctoral Dissertation Award and China
Computer Federation (CCF) Doctoral Dissertation Award, in
2014 and 2015, respectively. His research interests include
network security, privacy, and Internet of Things.

Huaiyu Yan received the B.S. degree in software engineer-
ing from Southeast University, Nanjing, China, in 2019.
Currently, he is working toward the Ph.D. in computer
science and engineering at Southeast University, Nanjing,
China. His current research interests include Internet of
Things, privacy and security.

Xinhui Shao received the B.S degree in communication
engineering from Shanghai University, Shanghai, China, in
2019. Currently, he is working toward the master degree in
cyber science and engineering at Southeast University, Nan-
jing, China. His current research interests include Internet
of Things, privacy and security.
10
Junzhou Luo received the B.S. degree in applied mathemat-
ics and the M.S. and Ph.D. degrees in computer network, all
from Southeast University, China, in 1982, 1992, and 2000,
respectively. He is a full professor in the School of Computer
Science and Engineering, Southeast University, Nanjing,
China. He is a member of the IEEE Computer Society and
co-chair of IEEE SMC Technical Committee on Computer
Supported Cooperative Work in Design, and he is a member
of the ACM and chair of ACM SIGCOMM China. His research
interests are next generation network architecture, network
security, cloud computing, and wireless LAN.

Yiling Xu received the B.S. degree (2016) in digital media
technology and the M.S degree (2019) in Computer Science
from Jiangnan University, China and Southeast University,
China, respectively. She is a Software Engineer in Test in
Alibaba Group, Hangzhou, China. Her research interests
include Internet of Things, privacy and security.

Bryan Pearson received his B.S. degree in Computer Sci-
ence from Stetson University in 2018. He is currently
working towards the Ph.D degree in Computer Science at
the University of Central Florida. His research interests
include Internet of Things security and privacy, fuzz testing,
and binary analysis.

Dr. Xinwen Fu is a Professor with the Department of
Computer Science, University of Massachusetts Lowell, Low-
ell, MA, USA. He received the B.S. degree in 1995 from
Xi’an Jiaotong University, Xi’an, China, the M.S. degree in
electrical engineering in 1998 from the University of Science
and Technology of China, Hefei, China, and the Ph.D.
degree in computer engineering in 2005 from Texas A&M
University, College Station, TX, USA. His current research
interests include computer security and privacy, and digital
forensics. His research was reported by various media such
as Wired and aired on CNN and CCTV 10. He is a senior
member of IEEE.

http://refhub.elsevier.com/S1383-7621(21)00166-1/sb40
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb40
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb40
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb40
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb40
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb41
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb41
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb41
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb41
http://refhub.elsevier.com/S1383-7621(21)00166-1/sb41
http://dx.doi.org/10.3390/cryptography2030020
http://dx.doi.org/10.3390/cryptography2030020
http://dx.doi.org/10.3390/cryptography2030020

	Secure boot, trusted boot and remote attestation for ARM TrustZone-based IoT Nodes
	Introduction
	Background
	TrustZone overview
	Secure boot and trusted boot

	System overview
	Threat model
	System design

	Hybrid booting approach
	Root of trust
	Secure boot
	Offline phase
	Secure boot phase

	Trusted boot
	Offline phase
	Trusted boot phase

	Paging-based process integrity measurement and attestation method
	Basic idea
	Offline program measurement
	Runtime process integrity measurement
	Process integrity attestation

	Evaluation
	Experimental setup
	Effectiveness
	Performance

	Security analysis and limitations
	The hybrid booting approach
	The paging-based process integrity measurement and attestation method

	Related work
	Research and application of TrustZone
	System load-time integrity verification
	System runtime integrity verification

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

