
Secure Fingertip Mouse for Mobile Devices

Zhen Ling∗, Junzhou Luo∗, Qi Chen∗, Qinggang Yue†, Ming Yang∗, Wei Yu‡ and Xinwen Fu†

∗Southeast University, Email: {zhenling, jluo, qichen, yangming2002}@seu.edu.cn
‡Towson University, Email: wyu@towson.edu

†University of Massachusetts Lowell, Email: {qye, xinwenfu}@cs.uml.edu

Abstract—Various attacks may disclose sensitive information
such as passwords of mobile devices. Residue-based attacks
exploit oily or heat residues on the touch screen, computer vision
based attacks analyze the hand movement on a keyboard, and
sensor based attacks measure a device’s motion difference via
motion sensors as different keys are tapped. A randomized soft
keyboard may defeat these attacks. However, a randomized key
layout is counter-intuitive and users may be reluctant to adopt
it. In this paper, we introduce a novel and intuitive input system,
secure finger mouse, which uses a mobile device’s camera sensing
the fingertip movement, moves an on-screen cursor and performs
clicks by sensing click gestures. We design a randomized mouse
acceleration algorithm so that the adversary cannot infer keys
clicked on the soft keyboard by observing the finger movement.
The secure finger mouse can defeat attacks including residue,

computer vision and motion based attacks too. We perform both
theoretical analysis and real-world experiments to demonstrate
the security and usability of the secure fingertip mouse.

I. INTRODUCTION

Touch-enabled mobile devices have become a burgeoning

attack target. Many attacks target sensitive information such

as passwords entered on mobile devices by exploiting the

soft keyboard. In residue-based attacks [1]–[4], oily or heat

residues left on the touch screen indicate which keys are

tapped. By measuring the heat residue left on the touched

positions, even the order of tapped keys may be determined.

In computer vision-based attacks [5]–[13], the interaction

between the hand and the keyboard is exploited. For example,

the hand movement and finger position indicates which keys

are being touched [12], [13]. In sensor-based attacks [14]–

[17], the malware senses a device’s motion difference via its

accelerometer (acceleration) and gyroscope (orientation) when

different keys are touched and the device moves slightly.

Intuitively, these attacks are feasible because of the static

layout of the soft keyboard of a mobile device. A straightfor-

ward countermeasure is to use a randomized keyboard. Such

randomized keyboards have been developed for Android and

iOS platforms [12] and [18]. However, those soft keyboards

are not adopted broadly. One reason is that since a randomized

keyboard is not intuitive, it can be hard to find keys on a

randomized layout and the usability is limited.

In this paper, we introduce a novel and intuitive input

system, secure fingertip mouse. First, the system is a finger

mouse. The (back) camera on a mobile is used to capture

the finger movement in the physical space (control space),

which is mapped to the cursor movement on the touch screen

(display space). Click gestures are used to “click” the keys.

Second, it is secure in the sense that an adversary cannot

infer the on-screen mouse trajectory by analyzing a recorded

video of the hand movement. We add randomness into the

mouse acceleration algorithm, i.e., the mapping from the

control space to the display space. A video demo of the

secure finger mouse on Samsung Galaxy Note 3 is given at

https://youtu.be/-akGArD0deE.

The major contribution of this paper is summarized as

follows. First, the secure finger mouse is the first of its kind

for mobile devices. Our system does not use any accessories

[19], [20] and only a mobile device’s camera is used to sense

finger movement. Second, to implement a smooth mouse and

improve the usability, we employ various computer vision

techniques to increase the rate of frames per second (FPS).

Third, the secure finger mouse can defeat various attacks.

For example, residue-based attacks fail since no heat or oily

residues are left on the touch screen. The randomized mouse

acceleration function uses a sequence of random acceleration

factors to disrupt the correlation between the physical fingertip

movement and the on-screen cursor movement. The sequence

of random acceleration factors works like a “secret key”

encrypting the on-screen cursor trajectory. We carefully select

the range of acceleration factors to balance the security and

usability. The concept of randomized mouse acceleration goes

beyond the secure finger mouse and should also be adopted by

traditional mouse since modern wireless mice do not encrypt

their communication. An adversary may sniff the raw mouse

data and reconstruct the on-screen trajectory to derive sensitive

information such as passwords [21].

The rest of this paper is organized as follows: We review

related work in Section II. We present the secure fingertip

mouse, including the threat model, the basic idea, and the

detailed design of our system in Section III. In Section IV, we

conduct theoretical analysis of the security and usability of our

developed system. In Section V, we perform extensive real-

world experiments to demonstrate the security and usability

of the secure fingertip mouse. We conclude this paper in

Section VI.

II. RELATED WORK

Touch-screen enabled mobile devices suffer from various

side channel attacks, which may disclose individuals’ pass-

words or pins. Example of these attacks include sensor-based

malware attacks [14]–[17], residue-based attacks [1]–[4], and

computer vision-based attacks [7]–[13]. In sensor-based mal-

ware attacks, the malware could be installed on the victim’s

device, collecting data from sensors (e.g., accelerometer, etc.)

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

Fingertip

Movement

Click

Gesture

Step 3: Detecting Fingertip

Step 5: Identifying Fingertip Actions

Step 5.a:

Tapping a Key

Step 2: Preprocessing

Step 1: Taking Video

Step 4: Locating Fingertip Top

Step 5.b:

Performing Cursor

Acceleration

Fig. 1. Workflow of Secure Finger Mouse

and infer the tapped password from the user. For example,

TouchLogger [14] is an Android malware that uses the device

orientation data to infer keystrokes. Owusu et al. showed

[15] that a malware could use accelerometer data to infer

the entered keys on a virtual keyboard. TapLogger [16] used

motion sensors to infer a user’s tap inputs on a smart mobile.

Residue-based attacks exploit oily or heat residues on the

touch screen while computer vision based attacks analyze the

interaction between the hand and touch screen.

There are existing research efforts on improving the security

of authentication on mobile devices [22]–[30]. In the most

related work by De Luca et al. [28], [29], a special touchable

device on the back of a mobile device is used to perform point-

ing and dragging operations for the purpose of authentication.

There are also existing works exploring the back camera

of mobile devices for human computer interaction. In [31], a

finger is used to cover or uncover the camera lens. The change

of brightness is sensed for the interaction with mobile devices.

Oh and Hong [32] proposed a finger gesture based mobile user

interface. To the best of our knowledge, there is no comparable

work to the secure finger mouse in this paper.

III. SECURE FINGER MOUSE

In this section, we first define the threat model and present

the basic idea of the secure finger mouse. We then elaborate

the detailed design of our proposed system.

A. Threat Model

In this paper, we use the following threat model to demon-

strate the security of the secure finger mouse while our

technique can defeat many other attacks. A touch-enabled

mobile device is used in a public environment. An adversary

records videos of a victim performing touch input. The victim

is cautious about the surroundings and does not input sensitive

information when the adversary is too close. Therefore, the

adversary cannot directly see the input on the screen in a

recorded video. It is assumed that the adversary can obtain

the accurate information of the finger movement via various

computer vision techniques.

B. Basic Idea

Figure 1 illustrates the workflow of the secure finger mouse.

To input a password, a user taps a password input box on

the touch screen. After a keyboard pops up, the user puts

her index finger beneath the device. When the finger moves,

the on-screen cursor moves. When the cursor moves onto a

key, the user performs a click gesture in order to enter the

key. Therefore, the interaction between a user and her mobile

device occurs in two spaces: control space where a user moves

her fingertip in the physical space; display space where the

cursor movement is displayed on the touch screen. Figure

2 illustrates the use of the secure finger mouse. Please note

that the secure finger mouse can be used for entering any

information while we use password inputting as the example.

The secure finger mouse works in five steps:

Step 1. Taking Video: When the user touches a password

input box, a keyboard pops up and the camera is activated

to take the video and capture the back-of-device interaction

between the finger and the mobile. We can display the video

on the screen. The display is called a video viewer.

Step 2. Preprocessing: We preprocess the video with skin

segmentation techniques to remove the background and keep

the region with the human skin color in each video frame.

Step 3. Detecting Fingertip: After preprocessing, a finger

detection classifier is employed to identify the finger frame by

frame and compute the position of the fingertip.

Step 4. Locating Fingertip Top Position: We use the

fingertip top as the actual physical “mouse” and its movement

is the raw mouse movement. Noise reduction methods are

developed to suppress the impact of fingertip shaking.

Step 5. Identifying Fingertip Actions: The secure fingertip

mouse has two types of events: click and movement. Step

5.a. Tapping a key: If a click gesture is detected, we check

the position of the on-screen cursor and generate the corre-

sponding key. Step 5.b. Performing Cursor Acceleration:

If a click gesture is not detected, we perform the mouse

acceleration and move the cursor on the touch screen. That

is, we transfer the raw fingertip movement into the on-

screen cursor movement. The mapping from the raw fingertip

movement to the on-screen cursor movement is randomized to

hide the cursor movement from a potential adversary. We use

two random variables to control the mapping and implement

the obfuscation. Without knowing the sequence of values of

these two random variables, the adversary will not be able to

recover the on-screen cursor movement trajectory and know

what are clicked on a keyboard.

We elaborate these five steps in detail below.

C. Step 1. Taking Video

We use the back camera of the device to take videos of

finger movement. The process of taking a video is a process of

sampling the continuous finger motion in the physical control

space. The sampling rate is the frames per second (FPS). The

sampling rate has to be high enough to satisfy the Nyquist

sampling theory to capture the details of the finger movement.

Most modern mobile device cameras can record a video at 30

Fig. 2. Using finger mouse Fig. 3. Original finger image Fig. 4. Preprocessed finger image Fig. 5. Detected fingertip

C0

C1 C2

C4 C3

D2D1

D4 D3

x

y

w

h

Fig. 6. Region of Interest

fps. However, since we perform extra processing of each video

frame with various computer vision algorithms and the mobile

device’s computing power is limited, the actual FPS for the

secure finger mouse decreases.

D. Step 2. Preprocessing

Since we are only interested in the fingertip area, we apply

skin segmentation techniques [33] to subtract background and

identify the human skin region in each frame in order to

improve the finger detection accuracy and processing speed in

later steps. The objective of skin segmentation is to determine

whether a pixel in a color image has a skin color or non-

skin color. A skin color distribution model [34] is a generic

and efficient skin segmentation method. Extensive research

has been performed to find the fine bounds of skin color in

different color spaces, including RGB, normalized rg, HSV

and YCbCr [34]–[36]. In this study, we adopt the popular

RGB space. A widely used RGB skin color space model [36]

is defined as follows,

R > 95 and G > 40 and B > 20 and,

max{R,G,B} −min{R,G,B} > 15 and,

|R −G| > 15 and R > G and R > B,

(1)

where R, G, and B are the red, green and blue values in

the range of [0, 255] respectively. Due to the lighting, the

RGB-based skin segmentation may not be always perfect.

Consequently, we apply the two computer vision operations,

erosion and dilation, to the segmented image to further remove

the noise. Figure 3 illustrates an original image obtained via

a phone camera while Figure 4 shows the fingertip after

preprocessing.

E. Step 3. Detecting Fingertip

In our system, Viola and Jones’ cascade-like Adaboost

classifiers [37], [38] are adopted for its high accuracy and

low computational complexity for real-time fingertip detection.

The cascade classifier is derived in the following way. We first

collect sufficient gray-scale training images of fingers. 50 vol-

unteers participate in the experiments in diverse backgrounds

and use the back camera of a Samsung Galaxy Note 3 to

record their finger actions as shown in Figure 2. We design and

implement a tool to segment the skin area in an image and then

manually use a rectangle to mark the fingertip area. We collect

1600 samples of fingertip images, denoted as positive samples.

We also collect 3500 negative samples, in which fingertips

are not present. The parameters of the cascade classifier are

trained based on these positive and negative image samples.

To achieve fast finger detection, the Local Binary Patterns

(LBP) feature is employed during the training process. We

also test these detectors with different number of stages, and

find that the detector with 13 stages achieves the best speed

and accuracy. Figure 5 shows the fingertip detected by the

cascade classifier.

We adopt the following two strategies to speed up the

fingertip detection in order to improve FPS: (i) We reduce

the resolution of each video frame to 320 × 240; (ii) We

operate on the region of interest (ROI), i.e., the region of the

fingertip, and feed the ROI to the fingertip detector. For the

first frame, the ROI is set as the whole image. The detector

finds the fingertip area in a bounding box such as the bounding

box with center C0, width w and height h in Figure 6. In

two consecutive frames, the finger movement is limited given

a specific FPS. Denote the maximum value of the movement

along the x and y axes as ∆X and ∆Y respectively. Then, the

ROI in the subsequent frame can be estimated by the rectangle

D1D2D3D4, and its size is (2∗∆X+w) by (2∗∆Y +h). The

new ROI is fed into the cascade classifier and the processing

speed improves because of the small ROI.

The size of the ROI is critical for a decent FPS. We use

experiments to derive the range of a single fingertip movement

(i.e., ∆x and ∆y), while w and h is generated by the cascade

classifier. Figures 7 and 8 show the empirical cumulative

distribution function (ECDF) of fingertip movement. The

preferred ∆X and ∆Y are the values where the corresponding

ECDFs reach 100%. The dark area with the finger in Figure

9 demonstrates the ROI.

F. Step 4. Locating Fingertip Top

The cascade classifier produces a gray image of the finger-

tip. Since we use the fingertip top as the mouse to control

the on-screen cursor movement, we need to accurately locate

the fingertip top as illustrated in Figure 10. From Figure

10, we can see that the fingertip is bright compared with

the background. We use Otsu’s method [39] to conduct the

clustering-based thresholding and obtain a binary image, as

shown in Figure 11. The fingertip contour can then be derived

by looking for contours in the binary image. We fit a line over

the central points of each horizontal line of the contour. The

intersection between this line and the top of the contour is the

fingertip top as shown in Figure 12.

To control the cursor, we need to translate the motion of

the fingertip top into the motion of the cursor. Denote F =
{f0, f1, . . . , fi} as a series of sequential video frames, where

fi is the latest frame. Denote the coordinate of the fingertip

0 10 20 30 40 50 60 70 80
|dx|

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F(
|d
x|
)

Fig. 7. Empirical CDF of |∆x|

0 20 40 60 80 100 120 140 160 180 200 220
|dy|

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F(
|d
y|
)

Fig. 8. Empirical CDF of |∆y| Fig. 9. Finger in ROI Fig. 10. Gray image

Fig. 11. Binary image Fig. 12. Located fingertip top

t0

t1

t2

x

y

0

Fig. 13. Clicking process taken from
back camera

Phone Camera

t0

t1

t2

Fig. 14. Clicking process

top in the ith frame as (xi, yi). The raw movement along the x
and y axes is denoted as (∆xi,∆yi), where ∆xi = xi−xi−1

and ∆yi = yi − yi−1. (∆xi,∆yi) will be used to control the

cursor motion.

In practice, the coordinate of the fingertip top may not

be static even if the user tries to hold it statically in front

of the camera. There are two error sources. First, the finger

may shake slightly. Second, computing (x, y) introduces

errors. We have observed that the shaking causes continuous

fingertip movements in oppositive directions within a tiny area.

Therefore, we can identify the shaking with Equation (2).

0 6 ∆xi,∆yi 6 Te and − Te 6 ∆xi+1,∆yi+1 6 0

or − Te 6 ∆xi,∆yi 6 0 and 0 6 ∆xi+1,∆yi+1 6 Te

or − Te 6 ∆xi,∆yi+1 6 0 and 0 6 ∆xi+1,∆yi 6 Te

or 0 6 ∆xi,∆yi+1 6 Te and − Te 6 ∆xi+1,∆yi 6 0.
(2)

If the shaking is detected, the fingertip top’s coordinate (x,y)

will not be updated to achieve a stable and accurate cursor.

G. Step 5. Identifying Fingertip Actions

We design two motion events for the secure fingertip mouse:

movement and click. The challenge is to differentiate these

two events. The click is indicated by the click gesture, which

is defined as bending the finger toward the camera quickly

and then returning to its original position. We have to perform

an accurate detection of the click gesture from the fingertip

movement. If a click gesture misses the detection and is

misidentified as a movement, the cursor will just move fast

on the screen and no key will be entered.

1) Step 5.a: Tapping a key: Figures 13 and 14 illustrate

the click gesture from different angles. Figure 13 shows that

when a click occurs, the fingertip moves much more along the

y axis. It can also be observed that the fingertip accelerates

while a click gesture is being performed. A third observation

is that the area of the fingertip increases while the fingertip

moves upward towards the camera.

Based on these three observations, we use the velocity

change to predict the start of the click gesture and use the

change of the fingertip area to confirm whether it is a click

gesture or not. In the prediction phase, to identify the start of

a click, we use a queue to buffer the fingertip movement data

and timestamps (i.e., (∆xi, ∆yi, ∆ti), where ∆ti = ti−ti−1)

and derive the average velocity of the movement. To identify

the start of the click fast, we need to reduce the queue size.

We conduct extensive tests and our data shows that the click

gesture can be detected if the queue size is 3. Denote the

movement data in the queue as {(∆xi−2, ∆yi−2, ∆ti−2),
(∆xi−1, ∆yi−1, ∆ti−1), (∆xi, ∆yi, ∆ti)}. The velocity

along the y axis can be derived by

vi =
∆yi
∆ti

. (3)

Denote the sequence of velocity as {vi−2, vi−1, vi} and the

average velocity is ai−2 = vi−2+vi−1+vi
3

. Figure 15 illustrates

the velocity along the y axis in one click. It can be observed

that the velocity significantly increases along the y axis. The

frame where a user starts the click is the (i − 2)th frame in

Figure 15. We use a threshold TA to determine whether the

user performs the click gesture or not as follows:
{

Click , ai−2 > TA

Non-click , ai−2 < TA.
(4)

Once the click gesture is detected, we need to confirm

the click gesture in order to reduce the false positive rate of

detecting click gestures. A user may quickly move her fingertip

and this may incur a false positive click gesture. Since the

fingertip area increases during a click in the video, we use

this feature to determine whether a user’s fingertip moves

Frames (#)

0 5 10 15 20 25

M
o
v
e
m

e
n
t
V

e
lo

c
it
y
 i
n
 t
h
e
 y

 A
x
is

-500

-400

-300

-200

-100

0

100

200

300

400

500

v
i-1v

i-2

v
i

Fig. 15. Velocity along y axis

Frames (#)

0 5 10 15 20 25

F
in

g
e
rt

ip
 A

e
ra

-800
-700
-600
-500
-400
-300
-200
-100

0
100
200
300
400
500
600
700
800

∆s
i

Fig. 16. Verifying the start of a user click

Frame (#)

0 5 10 15 20 25

F
in

g
e
rt

ip
 A

e
ra

-800
-700
-600
-500
-400
-300
-200
-100

0
100
200
300
400
500
600
700
800

∆s
i-1∆s

i

Fig. 17. Detecting the end of a user click

towards the camera or not. Denote the area of the fingertip

as si in the ith frame and the fingertip area change as ∆si,
where ∆si = si−si−1. Figure 16 illustrates the change of the

fingertip area. It can be observed that ∆si rises dramatically.

A threshold Ts is used to confirm the click gesture,

∆si 6 Ts. (5)

With the prediction and confirmation, we can accurately detect

a user’s click gesture and stop the cursor movement when a

user clicks a key.

Recall that we buffer 3 frames in order to determine the

start of a click gesture. This delays the response to the

fingertip movement. The frame rate should be large enough

to reduce this delay. For example, if the frame rate FPS is

20, the latency is 2 ∗ 1

20
= 100ms, which does not affect the

performance of our system very much. FPS will also increase

with the increasing computing power of mobile devices we

see nowadays.

To determine the end of a click gesture, we again use

the change of the fingertip area. After completing the click

gesture, the user moves her fingertip backward to the original

position. The fingertip area in the video decreases. In practice,

a user may not move her fingertip to exactly the same position

and the cascade classifier may also introduce errors. We use

another threshold T ′

s to determine whether a user stops or not.

If the fingertip area change is smaller than T ′

s, the user stops

and finishes the click gesture. Figure 17 shows the change of

the fingertip area corresponding to a click gesture. It can be

observed that ∆si−1 is around 0 in the boundary T ′

s in the

i − 1th frame. To confirm the end of the click, we use two

continuous frames to measure the change of the fingertip area,

that is,

|∆si−1| 6 T ′

s & |∆si| 6 T ′

s. (6)

Once Formula (6) is satisfied, we know that the i− 1th frame

is the end of a click.

When the click gesture is detected, we can determine the

intentional key is the one over which the cursor hovers. To

generate the key, we use the Android input method service

for the password input box and send the key value to the

input box. We implement an input method by extending the

Android input method service so that the user can use either

a 12-key numeric keypad or a full size keyboard.

2) Step 5.b: Performing Cursor Acceleration: Traditional

mouse acceleration algorithms translate the mouse raw move-

ment data to the on-screen cursor movement with a fixed static

algorithm. Given the raw mouse movement data, the mapping

from the control space to the display space is fixed. If we apply

such a static acceleration algorithm to the fingertip mouse, an

adversary may record the video of the finger movement and

reconstruct the on-screen cursor trajectory to infer the entered

keys.

The basic idea of securing the fingertip mouse is to use

acceleration algorithms with random parameters. We add ran-

domness into a classic mouse acceleration algorithm shown

in Equation (7), i.e., a two-level transfer function, and use

a pair of random variables to transfer a raw two-dimension

movement in the control space to the movement in the display

space. This static two-level transfer function is currently used

as a “lightweight” pointer acceleration technique [40] in Xorg,

the open-source reference implementation of the X window

system. There are two key variables in the transfer function:

acceleration g and threshold T . The acceleration factor defines

a series of gains from the control space to the display space

(CD), while the threshold defines the minimum distance re-

quired to change the gain (default value is 1) to a new one.

Denote the movement in the control space and display space

as C = (∆x,∆y) and D = (∆x′,∆y′) respectively. The two-

level transfer function can be defined by

D = f(g, T) =

{

g × C , |∆x| + |∆y| > T
C , |∆x| + |∆y| < T

(7)

Algorithm 1 introduces the secure lightweight pointer ac-

celeration algorithm. As long as the movement exceeds the

threshold, a random CD gain will be used to accelerate the

movement. The integer part of the accelerated movement

advances the cursor while the remainders are accumulated in

later calculation. Because of the performance requirements, the

CD gain g and threshold T are constrained and their ranges

are G and T respectively.

According to Algorithm 1, inputting a password involves

a sequence of acceleration. For each movement (∆x, ∆y), a

random g and T are selected. Assume there are k movements,

(C1, · · · , Ck) are the movements in the control space and

(D1, · · · , Dk) are the movements in the display space. The

Algorithm 1 Secure Lightweight Acceleration Algorithm

Require:

(a) ∆x,∆y, finger movement in the control space;

(b) T , a set of thresholds;

(c) T , a threshold selected from T ;

(d) Rx, Ry , remainders of the cursor movement;

(e) X,Y , cursor position in the display space;

(f) G, a set of CD gains.

(g) g, a CD gain selected from G.

1: Randomly select a T from T
2: if |∆x|+ |∆y| > T then

3: Randomly select a g from G
4: X = g ×∆x+Rx, Y = g ×∆y +Ry

5: Rx = X − ⌊X⌋, Ry = Y − ⌊Y ⌋
6: X = ⌊X⌋, Y = ⌊Y ⌋
7: else

8: X = X +∆x, Y = Y +∆y
9: end if

corresponding CD gains are (g1, · · · , gk) and the sequence of

thresholds are (T1, · · · , Tk). Even if an attacker records the

video of the finger movement and derives (C1, · · · , Ck), it

will be hard for the attacker to derive (D1, · · · , Dk) since she

does not know (g1, · · · , gk) and (T1, · · · , Tk). Therefore, we

disrupt the correlation between the control space movement

and the display space movement by employing the random

acceleration factors.

IV. ANALYSIS

In this section, we first analyze the usability of the secure

finger mouse system and then perform the security analysis.

A. Usability Analysis

From a user’s perspective, the time for entering a password

is an important performance metric for the secure finger mouse

system. Fitts’ law model [41] has been commonly used to

evaluate the efficiency of interaction techniques and input

devices. Assume a password has l keys. According to Fitts’

law, we can derive the total amount of moving time MT
inputting the password. Denote the moving time between the

(i− 1)th key and the ith key as MTi, we have

MT =

l
∑

i=1

MTi, (8)

MTi = a+ b IDi, (9)

IDi = log2
Di

Wi

+ 1, (10)

where a and b are two constants. Di is the distance from the

i− 1th key to ith key (the target) and Wi is the width of the

target. IDi refers to the index of difficulty moving to the ith

key. Therefore,

MT = l× a+ b

l
∑

i=1

log2

(

Di

W
+ 1

)

. (11)

From Equation (11), we can see that the moving time increases

if the password length increases and a key is smaller.

We use the true positive (TP) and false positive (FP) to

measure the accuracy of our click detection mechanism. The

true positive rate is defined as

TP =
Ns

Nc

, (12)

where Ns is the number of successful detected click gestures

and Nc is the total number of actual clicks. The false positive

rate is defined by

FP =
Nf

Nn

, (13)

where Nf is the number of non-click actions that are identified

as click actions and Nn is the total number of non-click

actions.

We measure the input accuracy as follows

P =
Rs

R
, (14)

where R is the total number of typed passwords and Rs is the

number of successful inputs.

B. Security Analysis

Naturally, the secure finger mouse can defeat various sensor,

residue and computer vision based attacks. One potential threat

against the secure finger mouse works as follows: the attacker

records a video of the finger movement and analyzes the

video to infer the password input. We assume that the attacker

can obtain the movement in the control space (C1, · · · , Ck)

from the video1. If the attacker knows the acceleration factors

(g1, · · · , gk) and (T1, · · · , Tk), she may infer the movement

(D1, · · · , Dk) in the display space. However, the acceleration

factors are random and are kept as a secret.

We now discuss the challenge for the attacker who deploys

the brute force attack guessing the sequence of g and T , which

behave like a key encrypting the cursor movement. Recall g
and T are integers and constrained within ranges G and T . The

cardinality |G| = m and |T | = n. The secure finger mouse

changes g and T at each captured frame. Given a frame rate of

FPS and the time needed to input a password as tp, the total

number of frames k = FPS × tp. The number of possible

sequences of g and T is |G|k|T |k = (mn)k. Therefore, we

can increase m, n and k to increase the key space.

In practice, an attacker may deploy a trajectory based

attack against the secure finger mouse as follows. The attacker

records a video of the finger movement while a user inputs

a password. We assume this video is synchronized with the

frame stream seen by the camera of the secure finger mouse

(while the actual unsynchronization between these two video

streams gives extra protection for the secure finger mouse).

The attacker randomly picks up a sequence of g and T
to estimate the on-screen cursor trajectory. She also knows

the clicking points on the cursor trajectory. In this attack,

1This is actually also hard since the attacker does not know exactly when
frames are generated by the victim’s camera.

the attacker knows the trajectory, but does not know the

starting point of the trajectory. That is, she does not know the

starting key of the password. This is actually a good attack

strategy. Even if we assume the attacker can record a video

of finger movement from the time the user powers up the

device, the attacker may have to resort to this attack given

that the large sequence of g and T distorts the trajectory too

much. Therefore, after deriving the trajectory generated from a

chosen sequence of g and T , the attacker tries to fit this cursor

trajectory to the keyboard, moving the trajectory from top left

to bottom right of the keyboard. If the trajectory lands on valid

keys, this sequence of keys becomes a password candidate.

Therefore, one cursor trajectory may generate a number of

password candidates.

We use two metrics to evaluate this attack: hit rate and

number of password candidates. Recall one sequence of g
and T creates one cursor trajectory. The hit rate is the number

of trajectories generating the correct password divided by the

total number of trajectories. However, even if there is a hit with

a trajectory, the attack is still not feasible when the number of

candidate passwords generated by that trajectory is too large.

V. EVALUATION

We have implemented the secure fingertip mouse as a third

party keyboard app for the Android platform and conducted

extensive real-world experiments to demonstrate the usability

and security of our developed secure fingertip mouse system.

In this section, we first present the experiment setup and then

show the evaluation results.

A. Experiment Setup

We conduct experiments on a Samsung Galaxy Note 3. It

has a resolution of 1080× 1920 pixels and the screen size is

5.7 inches. We implement two services, input method service

and cursor display service, and runs two threads, fingertip

detection thread and secure mouse acceleration thread. The

input method service provides a new input method, which

has four keyboards including a numeric keypad, QWERTY

keyboard, and two symbol keyboards. A user can install our

third party keyboard app to use this novel input method.

When an input box is touched, our keyboard pops up. The

fingertip detection thread takes videos using the device’s back

camera, preprocesses each frame, detects the fingertip using

our trained cascade classifier and then calculates the raw

fingertip movement. The click gesture detection method is

implemented in this thread. If a click gesture is detected, the

clicked key will be identified and the thread will send the

clicked key event to the input method service to enter this key.

Otherwise, it will send the raw movement data to the secure

mouse acceleration thread. The secure mouse acceleration

thread chooses random acceleration factors to accelerate the

raw mouse movement and sends the accelerated movement

to the cursor display service. The cursor display service then

moves the on-screen cursor. The code uses the Jave Native

Interface and the computer vision library OpenCV [42].

B. Usability Evaluation

The moving time of the cursor between different keys is the

essential metric to evaluate the usability of the secure fingertip

mouse. The threshold and acceleration affect the moving time.

We need to carefully determine the ranges for the threshold

and acceleration to achieve both good usability and security.

We recruit 15 unpaid volunteers, 11 males and 4 females,

aged 24 years on average (standard deviation = 2.15 years) to

perform a classic within-subjects experiment [43] and measure

the cursor moving time between two objects. As a common

practice, the volunteers are asked to move the cursor forward

and backward between keys “4” and “6” using a numeric

keypad for 5 times and also click these two keys.

Figure 18 shows the average cursor moving time versus

different acceleration and threshold values. Notice that our

secure finger mouse achieves a frame rate of 15. It can be

observed that less acceleration will increase the moving time.

However, too much acceleration also increases the moving

time. The reason is with large acceleration, a user indeed

can move the cursor fast from one key to another, but it also

becomes harder for the user to accurately control the cursor

to stop on the right key. The chance that the user misses the

intended keys increases so that more time is needed to click the

right keys. It can also be observed that the threshold can affect

the moving time as well. Recall that the threshold controls

what (∆x, ∆y) will be accelerated. A lower threshold will

accelerate more finger movements. But it can be hard for the

user to control the cursor and click the right keys. However, a

large threshold does the opposite and the cursor movement will

be too slow. According to the results from Figure 18, the range

of threshold is chosen as [2, 8], while the range of acceleration

is selected as [8, 13]. When the threshold and acceleration is 3
and 10, respectively, the performance of cursor moving time is

the best. Beyond the chosen ranges, the moving time increases

dramatically.

Figure 19 compares moving time using a numeric keypad

and a QWERTY keyboard with the threshold 3. To measure

the moving time using a QWERTY keyboard, we ask the

volunteers to move the cursor between key “S” and key “K”

for 5 times and click these two keys, and then calculate the

average cursor moving time. We can see that the moving time

using a numeric key is slightly better than the one using

a QWERTY keyboard. Since the size of the target key is

much smaller on a QWERTY keyboard, the index of difficulty

(ID) of QWERTY keyboard is larger than a numeric keypad’s

ID. With smaller keys on the QWERTY keyboard, the users

may undershoot or overshoot the intended key while moving

the cursor. It takes time for the user to correct the cursor’s

position. The results match the theoretical analysis in Equation

(11). It can also be observed that the moving time slightly

increases after using random thresholds and accelerations on

two different keyboards.

Figure 20 compares the input time between touch-inputting

on a numeric keypad and using the secure finger mouse. The

15 volunteers are asked to tap a random 4-digits pin. It can be

Acceleration

13

12

11

10

9

88
7

6

Threshold

5
4

3
2

1.3
1.2
1.1

1
0.9

1.4

0.6
0.7
0.8

A
v

e
ra

g
e

 M
o

v
in

g
 T

im
e

 (
S

e
c

)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Fig. 18. Moving time versus acceleration and
threshold

8 9 10 11 12 13
Acceleration

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Av
er
ag
e
M
ov
in
g
Ti
m
e(
se
c)

threshold=3: numeric keyboard
threshold=3: alphabetical keyboard
random parameter: numeric keyboard
random parameter: alphabetical keyboard

Fig. 19. Comparison of moving time on numeric
keypad and alphabetical keyboard

Normal
Keyboard

Secure Fingertip
Mouse

0
2
4
6
8

10
12
14
16
18
20
22
24

In
pu

t T
im

e
(S
ec
)

Fig. 20. Comparison of input time

observed that the median inputting time using the secure finger

mouse is around 7 seconds while the median touching input

time is around 2 seconds. This is reasonable since the secure

finger mouse is new to users. Our analysis shows that most of

the 7 seconds are spent on moving the cursor. Actually, the

secure finger mouse has a similar performance of input time

to the randomized keyboard in [12] while the secure finger

mouse is much more intuitive as an input method. For future

work, we plan to experiment on more powerful mobiles and

design new computer vision techniques in order to increase

the frame rate and reduce input time.

We now show the true positive and false positive rates for

click detection. To collect the ground truth of click and non-

click data, we ask the 15 volunteers to perform 20 clicks and

20 random movements. We use a decision tree and derive the

thresholds of the fingertip top velocity along the y axis and the

change of the fingertip area (i.e., TA, Ts) as 78.6 and 392.5
respectively. The threshold T ′

s in Formula (6), which is used to

determine the end of the click, is 210. Under these thresholds,

the true positive rate is 90.3%, while the false positive rate

is 7.0%. To measure the accuracy of the secure finger mouse,

we ask the volunteers to tap 100 random pins. 11 are tapped

wrong. The accuracy is 89%.

C. Security Evaluation

Recall it is assumed that the adversary can obtain a vic-

tim’s finger movement data in the control space and perfor-

m the brute force attack by enumerating the two random

variables, acceleration g and threshold T , in the transfer

function. The attacker knows g ∈ {2, 3, 4, 5, 6, 8} and T ∈
{8, 9, 10, 11, 12, 13}. That is, the acceleration has 6 possible

values and the threshold has 6 possible values. Assume the

pin length is 4. In our experiments, the average number of

movements (i.e. the number of (∆x,∆y)) for inputting a pin

is 95.8. If the brute force attack is performed, the key space

is (6 ∗ 6)95.8 ≈ 10149.

As introduced in Section IV-B, the attacker can deploy the

trajectory based attack. The volunteers are asked to input 30

four-letter random passwords using secure finger mouse on a

QWERTY keyboard. Therefore, 30 raw password trajectories

are generated in the control space. Recall that we assume the

adversary knows the raw trajectory in the control space. She

chooses a pair of random threshold and acceleration values in

order to generate a trajectory in the display space and fit this

trajectory onto the keyboard in order to discover password

candidates. This attack is performed 1000 times for each

password. In our experiments, the average number of password

candidates generated by a trajectory is 2988.4. The average hit

rate is 9.61% and the average number of password candidates

for a hit trajectory is 774.7. Therefore, even if the adversary

obtains a hit trajectory, she needs to try hundreds of times

in order to derive the correct password. The overall success

rate is 9.61%/774.7 = 1.24× 10−4 and this attack is also not

feasible in practice.

VI. CONCLUSION

In this paper, we introduce a novel secure fingertip mouse

that is able to defeat various emerging attacks including

sensor, residue attacks and computer vision based attacks

against touch-enabled devices. The secure fingertip mouse

uses the back camera of a mobile device sensing the fin-

gertip movement and moves a on-screen cursor accordingly.

A simple and effective click gesture is used for clicking on

the soft keyboard and entering keys. Since an attacker may

record videos of finger movement and reconstruct the on-

screen cursor trajectory to infer entered keys, we design a

randomized mouse acceleration function using a sequence of

random acceleration factors to disrupt the correlation between

the physical fingertip movement and the on-screen cursor

movement. Through a combination of both theoretical analysis

and real-world experiments, we demonstrate the feasibility and

security of the secure fingertip mouse system.

ACKNOWLEDGMENTS

This work was supported in part by China National

High Technology Research and Development Program under

grants No. 2013AA013503, National Natural Science Founda-

tion of China under grants 61502100, 61532013, 61272054,

61402104, 61572130, and 61320106007, by US NSF grants

1461060 and CNS 1350145, by Jiangsu Provincial Natural

Science Foundation of China under Grant BK20150637, by

Jiangsu Provincial Key Technology R&D Program under

grants BE2014603, by Jiangsu Provincial Key Laboratory of

Network and Information Security under grants BM2003201,

by Key Laboratory of Computer Network and Information

Integration of Ministry of Education of China under grants

93K-9 and by Collaborative Innovation Center of Novel Soft-

ware Technology and Industrialization. Any opinions, findings,

conclusions, and recommendations in this paper are those of

the authors and do not necessarily reflect the views of the

funding agencies.

REFERENCES

[1] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge
attacks on smartphone touch screens,” in Proceedings of Workshop on

Offensive Technology WOOT, 2010.
[2] M. Zalewski, “Cracking safes with thermal imaging,” http://lcamtuf.

coredump.cx/tsafe/, 2005.
[3] K. Mowery, S. Meiklejohn, and S. Savage, “Heat of the moment: Char-

acterizing the efficacy of thermal camera-based attacks,” in Proceedings

of Workshop On Offensive Technologies (WOOT), 2011.
[4] Y. Zhang, P. Xia, J. Luo, Z. Ling, B. Liu, and X. Fu, “Fingerprint attack

against touch-enabled devices,” in Proceedings of the 2nd Workshop on
Security and Privacy in Smartphones and Mobile Devices (SPSM), 2012.

[5] M. Backes, M. Duermuth, and D. Unruh, “Compromising reflections -
or - how to read lcd monitors around the corner,” in Proceedings of the

29th IEEE Symposium on Security and Privacy (S&P), 2008.
[6] M. Backes, T. Chen, M. D1rmuth, H. P. A. Lensch, and M. Welk, “Tem-

pest in a teapot: Compromising reflections revisited,” in Proceedings of

the 30th IEEE Symposium on Security and Privacy (S&P), 2009.
[7] R. Raguram, A. White, D. Goswami, F. Monrose, and J.-M. Frahm,

“iSpy: Automatic reconstruction of typed input from compromising
reflections,” in Proceedings of Proceedings of the 18th ACM Conference

on Computer and Communications Security (CCS), 2011.
[8] D. Balzarotti, M. Cova, and G. Vigna, “Clearshot: Eavesdropping on

keyboard input from video,” in Proceedings of the 29th IEEE Symposium

on Security and Privacy (S&P), 2008.
[9] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero, “A

fast eavesdropping attack against touchscreens,” in Proceedings of the

7th International Conference Information Assurance and Security (IAS),
2011.

[10] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J.-M. Frahm, “Seeing
double: Reconstructing obscured typed input from repeated compromis-
ing reflections,” in Proceedings of the 20th ACM SIGSAC conference on
Computer and Communications Security (CCS), 2013.

[11] Q. Yue, Z. Ling, X. Fu, B. Liu, W. Yu, and W. Zhao, “My google glass
sees your passwords!” in Proceedings of the Black Hat USA, 2014.

[12] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recognition
of touched keys on mobile devices,” in Proceedings of the 21st ACM

Conference on Computer and Communications Security (CCS), 2014.
[13] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your

hands reveal your secrets!” in Proceedings of the 21st ACM Conference
on Computer and Communications Security (CCS), 2014.

[14] L. Cai and H. Chen, “TouchLogger: Inferring keystrokes on touch screen
from smartphone motion,” in Proceedings of the 6th USENIX Workshop
on Hot Topics in Security (HotSec), 2011.

[15] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory:
Keystroke inference using accelerometers on smartphones,” in Proceed-

ings of The Thirteenth Workshop on Mobile Computing Systems and
Applications (HotMobile), February 2012.

[16] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors,” in Proceedings of
The ACM Conference on Wireless Network Security (WiSec), 2012.

[17] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“Tapprints: your finger taps have fingerprints,” in Proceedings of the 10th

international conference on Mobile systems, applications, and services
(MobiSys), 2012.

[18] J. Koch, “Codescrambler,” http://cydia.saurik.com/package/org.
thebigboss.codescrambler/, 2014.

[19] Innovative Devices Inc., “Mycestro, the wearable gesture based mouse,”
http://www.mycestro.com/, 2015.

[20] Thalmic Labs, “Myo gesture control armband,” https://www.thalmic.
com/myo/, 2015.

[21] X. Pan, Z. Ling, A. Pingley, W. Yu, K. Ren, N. Zhang, and X. Fu, “Pass-
word extraction via reconstructed wireless mouse trajectory,” Accepted

IEEE Transactions on Dependable and Secure Computing (TDSC),
vol. PP, no. 99, March 2015.

[22] T. Vu, A. Baid, S. Gao, M. Gruteser, R. Howard, J. Lindqvist, P. S-
pasojevic, and J. Walling, “Distinguishing users with capacitive touch
communication,” in Proceedings of ACM International Conference on

Mobile Computing and Networking (MobiCom), 2012.
[23] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann, “Touch

me once and i know it’s you! implicit authentication based on touch
screen patterns,” in Proceedings of the 30th SIGCHI Conference on

Human Factors in Computing Systems (CHI), 2012.
[24] N. Sae-Bae, K. Ahmed, K. Isbister, and N. Memon, “Biometric-rich

gestures: A novel approach to authentication on multi-touch devices,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI), 2012.
[25] Q. Yan, J. Han, Y. Li, J. Zhou, and R. H. Deng, “Designing leakage-

resilient password entry on touchscreen mobile devices,” in Proceedings

of the 8th ACM Symposium on Information, Computer and Communi-

cations Security (AsiaCCS), 2013.
[26] M. Shahzad, A. X. Liu, and A. Samuel, “Secure unlocking of mobile

touch screen devices by simple gestures – you can see it but you can not
do it,” in Proceedings of the 19th ACM Annual International Conference

on Mobile Computing and Networking (MOBICOM), 2013.
[27] L. Li, X. Zhao, and G. Xue, “Unobservable re-authentication for

smartphones,” in Proceedings of ISOC Network and Distributed System

Security Symposium (NDSS), 2013.
[28] A. De Luca, M. Harbach, N. D. H. Nguyen, M. Maurer, E. Rubegni,

M. P. Scipioni, and M. Langheinrich, “Back-of-device authentication
on smartphones,” in Proceedings of the 31nd SIGCHI Conference on

Human Factors in Computing Systems (CHI), 2013.
[29] A. De Luca, M. Harbach, E. von Zezschwitz, M. Maurer, B. Slawik,

H. Hussmann, and M. Smith, “Now you see me, now you don’t - protect-
ing smartphone authentication from shoulder surfers,” in Proceedings of

the 32nd SIGCHI Conference on Human Factors in Computing Systems
(CHI), 2014.

[30] Y. Chen, J. Sun, R. Zhang, and Y. Zhang, “Your song your way: Rhythm-
based two-factor authentication for multi-touch mobile devices,” in
Proceedings of the 34th IEEE International Conference on Computer

Communications (INFOCOM), 2015.
[31] X. Xiao, T. Han, and J. Wang, “Lensgesture: augmenting mobile

interactions with back-of-device finger gestures,” in Proceedings of
the 15th ACM on International conference on multimodal interaction

(ICMI), 2013.
[32] B.-H. Oh and K.-S. Hong, “Finger gesture-based three-dimension mobile

user interaction using a rear-facing camera,” International Journal of

Multimedia and Ubiquitous Engineering, 2013.
[33] S. L. Phung, A. Bouzerdoum, and D. Chai, “Skin segmentation using

color pixel classification: analysis and comparison,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 27, no. 1, pp. 148–
154, January 2005.

[34] P. Kakumanu, S. Makrogiannis, and N. Bourbakis, “A survey of skin-
color modeling and detection methods,” Pattern Recognition, vol. 40,
no. 3, p. 1106C1122, March 2007.

[35] J. Brand and J. S. Mason, “A comparative assessment of three ap-
proaches to pixel-level human skin-detection,” in Proceedings of the
International Conference on Pattern Recognition, 2000.

[36] J. Kovac, P. Peer, and F. Solina, “Human skin colour clustering for face
detection,” in Proceedings of IEEE Region 8 of International Conference

on Computer as a Tool (EUROCON), 2003.
[37] P. Viola and M. J. Jones, “Rapid object detection using a boosted

cascade of simple features,” in Proceedings of International Conference

on Computer Vision and Pattern Recognition (CVPR), 2001.
[38] ——, “Robust real-time face detection,” International Journal of Com-

puter Vision, vol. 57, pp. 137–154, 2004.
[39] OpenCV, “Otsu’s thresholding,” http://docs.opencv.org/trunk/d7/d4d/

tutorial py thresholding.html, 2015.
[40] X. Foundation, “Pointer acceleration,” http://www.x.org/wiki/

Development/Documentation/PointerAcceleration/, 2013.
[41] P. M. Fitts, “The information capacity of the human motor system

in controlling the amplitude of movement,” Journal of Experimental

Psychology, vol. 47, pp. 381–391, 1954.
[42] “OpenCV,” http://opencv.org/, 2015.
[43] G. Casiez, D. Vogel, R. Balakrishnan, and A. Cockburn, “The impact

of control-display gain on user performance in pointing tasks,” Human

Computer Interaction, 2008.

