
1

Data Structures

AVL Trees

1. Ellis Horowitz,etc., Fundamentals of Data Structures in C++

2. 殷人昆, 数据结构

3. 金远平, 数据结构

4. http://inside.mines.edu/~dmehta/

Teacher : Wang Wei

1

Dynamic Dictionaries

• Primary Operations
– Get(key) => search
– Insert(key, element) => insert
– Delete(key) => delete

• Additional operations
– Ascend()
– Get(index)
– Delete(index)

2

Balanced Trees

• BST
– has a high risk of becoming unbalanced

• AVL Tree
– Should be viewed as a BST with the following additional property

– For every node, the heights of its left and right subtrees differ by at
most 1

Unbalanced Balanced

A
B

C
A

B

C

D

ED E 3

2

AVL Tree

– named for its inventors Adelson-Velskii and Landis

• Definition
– An empty binary tree is height-balanced

– If T is a nonempty binary tree with TL and TR

• TL : left subtrees

• TR : right subtrees

– Then T is height-balanced iff

(1) TL and TR are height-balanced

(2) |hL-hR| <=1

– hL : the height of TL

– hR : the height of TR

4

balanced

A

B

C

D

E

bf (balance factor)

• for every node x, define its balance factor

– bf(x) = hL-hR

balance factor of x = height of left subtree of x

– height of right subtree of x

– balance factor of every node x, bf(x) , is – 1, 0, or 1

5

• The new tree is not an AVL tree only if you reach a node
whose balance factor is either 2 or –2

• this case is said the tree has become unbalanced

Height Of An AVL Tree

• The height of an AVL tree that has n nodes
– is at most 1.44 log2 (n+2)

• The height of every binary tree that has n nodes
– is at least log2 (n+1)

log2 (n+1) <= height <= 1.44 log2 (n+2)

• The height or the depth of an AVL tree is at most O(log2n)

• Search for any node cost O(log2n)

• Inserts or deletes cost O(log2n), even in the worst case

6

3

Unbalanced AVL tree

• The new tree is not an AVL tree only if you reach a node
whose balance factor is either 2 or –2

• this case is said the tree has become unbalanced

7

Rotations Types

For a new node Y, let A be the nearest ancestor of Y

Single Rotations

• LL :
– Y is inserted in the left subtree of the left subtree of A

• RR :
– Y is inserted in the right subtree of the right subtree of A

Double Rotations

• LR : is RR followed by LL
– Y is inserted in the right subtree of the left subtree of A

• RL : is LL followed by RR
– Y is inserted in the left subtree of the right subtree of A

8

9

RR
• Be inserted in the right subtree of the right subtree of A

• RR : adjustments to be rebalanced

inserted

Rotate
LeftA

C
E

B
Dh

h
h-1 h-1

1

0

0

B
A

C
ED

h
h

h-1 h

2

1

1 B

h h

C
EA

D
0

0

h-1 h

1

4

10

template <class E>
void AVLTree<E>::RotateL (AVLNode<E> *& ptr)
{ //右子树比左子树高: 做左单旋转后新根在ptr

AVLNode<E> *subL = ptr;
ptr = subL->right;
subL->right = ptr->left;
ptr->left = subL;
ptr->bf = subL->bf = 0;

}

11

• Be inserted in the left subtree of the left subtree of A

• LL : adjustments to be rebalanced

LL(右单旋转)

B

A
C

ED
h

h

h-1h

-2

-1

-1

inserted

h

h

h-1h-1

A

B
D

C
E

-1

0

0

hh
h-1

B

CE

AD
-1

0

0

h

12

template <class E>
void AVLTree<E>::RotateR (AVLNode<E> *& ptr)
{ //左子树比右子树高, 旋转后新根在ptr

AVLNode<E> *subR = ptr; //要右旋转的结点
ptr = subR->left;
subR->left = ptr->right;

//转移ptr右边负载
ptr->right = subR; //ptr成为新根
ptr->bf = subR->bf = 0;

}

5

13

LR

inserted

h

h

A

C
ED

h-1h-1

B

F G

-1

0

0
E

Rotated
Left

G

A

C

D

B

F h

h
h-1h

1

-1

-2

• Be inserted in the right subtree of the left subtree of A

• RL : adjustments to be rebalanced

14

Rotated
right

A

E

h

h

C

D
h-1

h

B
F

G
0

-2

-2
FGD

h

A

h-1

C

E

B
0

0 -1

h
h

15

template <class E>
void AVLTree<E>::RotateLR (AVLNode<E> *& ptr)
{ AVLNode<E> *subR = ptr;

AVLNode<E> *subL = subR->left;
ptr = subL->right;
subL->right = ptr->left;
ptr->left = subL;

if (ptr->bf <= 0)
subL->bf = 0;

else subL->bf = -1;
subR->left = ptr->right;
ptr->right = subR;

if (ptr->bf == -1)
subR->bf = 1;

else subR->bf = 0;
ptr->bf = 0;

}

6

16

RL

inserted

h

hh-1h-1

A

C

E
D

B

F G

1

0

0

A

C

E

B

F G
D

h

hhh-1

1

0

2

• Be inserted in the left subtree of the right subtree of A

• LR : adjustments to be rebalanced

Rotated
Right

17

A C
E

D

B FG

hh
h-1 h

0

0

-1

h

h
h-1

h

A

C
E

B

F
G

D

0

2

2

Rotated
Left

18

template <class E>

void AVLTree<E>::

RotateRL (AVLNode<E> *& ptr)

{

AVLNode<E> *subL = ptr;
AVLNode<E> *subR = subL->right;

ptr = subR->left;
subR->left = ptr->right;
ptr->right = subR;

if (ptr->bf >= 0) subR->bf = 0;
else subR->bf = 1;

subL->right = ptr->left;
ptr->left = subL;

if (ptr->bf == 1) subL->bf = -1;
else subL->bf = 0;

ptr->bf = 0;
};

7

19

Insertion

• When a new node p is inserted
– AVL tree has become unbalanced

• | bf | > 1 , for any node of the tree

• Method :

(1) following insert
(2) retrace path towards root
(3) adjust balance factors as needed
(4) stop when reach a node whose balance factor

becomes 0, 2, or –2, or the root

20

Let : bf(p)=0, pr is parent of p

• bf(pr) have three case :

1. bf(pr)=0 ,after inserted

 Subtree height is unchanged
 No further adjustments to be done

1 0inserted
pr

p

21

2. |bf(pr)| = 1
 bf(pr)=0 , before inserted
 No further adjustments to be done
 Subtree height is changed, +1/-1
 Must continue on path to root
 pr = Parent(pr)

0 -1inserted
pr

p
0 0 -1 0

8

22

3. |bf(pr)| = 2
– Subtree height is reduced by 1
– Must continue on path to root
– Similar to LL and RL rotations

or
RR and LR rotations

-1 -2inserted

pr

p

-1 0 -2 0

0 -1
q

23

 bf(pr) = 2

─ bf(q)=1

─ bf(q) =-1

RR

2
q

1

pr

p

0
pr

0
p

pr=q

RL

2
q

-1

pr

p

0
pr

0
q

pr=p

24

 bf(pr) = -2

─ bf(q) =-1

─ bf(q) =1

-2

q-1

pr

p

-2

q
1

pr

p

LL LR

9

25

Constructing an AVL tree

26

• keys : { 16, 3, 7, 11, 9, 26, 18, 14, 15 }

• Inserting and rebalancing

16
0

16

3

-1

0 LR
7

3 16
0 0

0

7

3

11
0

-1

1

16

16

3

7
0

1

-2

27

LL

3

7

169
0 0

0

1

11

7

3 16

11

9
0

-1

-2

2

3

7

11

26

9 16
0

1

1

2

RR

10

28

RL

0

RR

18

16
0

0
7

3 26

11

9

0

0

0

3

16

0

9

1
7

11

26

18

3
-1

-1
7

16

14

269

1
11

2
7

3 9
0

18

26

11

-1
16

1

29

15

18

2

3

18

16
-2

LR

7

3
0

0

0

11

7

14

9

-1

16

15
0

1

11

26 26

141

-2

9

30

Deletion

1. x is leaf node

2. x has a child

11

New Balance Factor Of q

• Deletion from left subtree of q => bf--

• Deletion from right subtree of q => bf++

• New balance factor = 1 or –1

=> no change in height of subtree rooted at q

• New balance factor = 0

=> height of subtree rooted at q has decreased by 1

• New balance factor = 2 or –2

=> tree is unbalanced at q

q

31

Imbalance Classification

• Let A be the nearest ancestor of the deleted node
– whose balance factor has become 2 or –2 following a deletion

• Deletion from left subtree of A => type L
• Deletion from right subtree of A => type R

• Type R => new bf(A) = 2

• So, old bf(A) = 1
• So, A has a left child B

– bf(B) = 0 => Rotation
– bf(B) = 1 => Rotation
– bf(B) = –1 => Rotation

32

33

1. x is leaf node
– Remove X

2. x has a child
– Replace X by the child

– Remove the child

3. x has two children
─ Replace X by Y

─ Y is the inorder predecessor or the the inorder successor of X

─ Remove Y

Deletion

12

34

• 1 bool shorter = true

– Notes : subtree height is unchanged or reduced

• 2 For every node, new balance factor depends on

– shorter

– bf(X)

– bf(child(X))

• 3 Must continue on path every p from parent(X) to root

– if shorter=false stop

– else

A Boolean Variable

35

p
0

h hh-1

p
1

hh-1

1) Old bf(p)=0 and left/right subtree height of p is reduced

then

New bf (p)=1/-1

shorter=false

36

2) Old bf (p)= <>0 and the heighter subtree of p is reduced

then

New bf (p)= 0

shorter=true

p
-1

h h-1

p
0

h-1 h-1

13

37

How to rebalance

─ Rotation : the subtree is reduced

─ Let q = the heighter subtree root

─ Then

3) Old bf (p)= <>0 and the shorter subtree of p is reduced

then

New bf (p)= 2/-2 => imbalance

shorter=true

38

a) Old bf (q)= 0

Rotated LL or RR to rebalance

shorter=false

No further adjustments to be done

RR 1

hh-1

p

h

q
-11

h

h

h-1

p

h

0
q

39

b) Old bf(q)= bf(p)

Rotated LL or RR to rebalance

New bf(q)= bf(p)=0

shorter=true

Must continue on path to root

RR 0

h-1h-1

p

h

q
01

h

h-1

h-1

p

h

1 q

14

40

c) Old bf (q) = -bf (p)

Rotated LR or RL to rebalance, form q to p

New bf(root) =0, the bf of other must be adjusted

shorter=true

0

h-1h-1h-1h-1

0 0
p q

r

RL

h-1

1

h
h-1

p

-1
q

h-1
or
h-2

h-1
or
h-2

h-1

r

Rotation Frequency

• Insert random numbers

– No rotation … 53.4% (approx)

– LL/RR … 23.3% (approx)

– LR/RL … 23.2% (approx)

41

42

//AVL树结点的类定义

#include <iostream.h>
#include “stack.h”
template <class E>
struct AVLNode : public BSTNode<E>
{

int bf;
AVLNode() { left = NULL; right = NULL; bf = 0; }
AVLNode (E d, AVLNode<E> *l = NULL,

AVLNode<E> *r = NULL)
{ data = d; left = l; right = r; bf = 0; }

};

Class Definition

15

43

1. Doubly linked list and position of k known

2. Position for insertion known

Operation Sequential list Linked list AVL tree

Search for k O(log n) O(n) O(log n)

Search for jth item O(1) O(j) O(log n)

Delete k O(n) O(1)1 O(log n)

Delete jth item O(n-j) O(j) O(log n)

Insert O(n) O(1)2 O(log n)

Output in order O(n) O(n) O(n)

Compares the Worst-Case Times

44

//平衡的二叉搜索树（AVL）类定义

template <class E>
class AVLTree : public BST<E>
{
public:

AVLTree() { root = NULL; } //构造函数

AVLTree (E Ref) { RefValue = Ref; root = NULL; }
//构造函数：构造非空AVL树

45

int Height() const; //高度
AVLNode<E>* Search (E x,

AVLNode<E> *& par) const; //搜索

bool Insert (E& e1) { return Insert (root, e1); } //插入
bool Remove (E x, E& e1)

{ return Remove (root, x, e1); } //删除

friend istream& operator >> (istream& in,
AVLTree<E>& Tree); //重载：输入

friend ostream& operator << (ostream& out,
const AVLTree<E>& Tree); //重载：输出

16

46

protected:
int Height (AVLNode<E> *ptr) const;

bool Insert (AVLNode<E>*& ptr, E& e1);
bool Remove (AVLNode<E>*& ptr, E x, E& e1);
void RotateL (AVLNode<E>*& ptr); //左单旋
void RotateR (AVLNode<E>*& ptr); //右单旋
void RotateLR (AVLNode<E>*& ptr); //先左后右双旋
void RotateRL (AVLNode<E>*& ptr); //先右后左双旋

};

Advanced Tree Structures

• self-adjusting data structure
– Dynamic collections of elements

• Such as

– Union-Find Sets

– AVL Trees

– Red-Black Trees

– Splay Trees

– Tries

47

1. Doubly linked list and position of k known

2. Position for insertion known

Operation Sequential list Linked list AVL tree

Search for k O(log n) O(n) O(log n)

Search for jth
item

O(1) O(j) O(log n)

Delete k O(n) O(1)1 O(log n)

Delete jth item O(n-j) O(j) O(log n)

Insert O(n) O(1)2 O(log n)

Output in order O(n) O(n) O(n)

48

