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Dynamic Dictionaries

• Primary Operations
– Get(key) => search
– Insert(key, element) => insert
– Delete(key) => delete

• Additional operations
– Ascend()
– Get(index)
– Delete(index)
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Balanced Trees

• BST
– has a high risk of becoming unbalanced

• AVL Tree 
– Should be viewed as a BST with the following additional property

– For every node, the heights of its left and right subtrees differ by at 
most  1
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AVL Tree

– named for its inventors Adelson-Velskii and Landis

• Definition
– An empty binary tree is height-balanced

– If T is a nonempty binary tree with TL and TR

• TL : left subtrees

• TR : right subtrees

– Then T is height-balanced iff

(1) TL and TR are height-balanced

(2) |hL-hR| <=1

– hL :  the height of TL

– hR : the height of TR
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bf (balance factor)

• for every node x, define its balance factor

– bf(x)  = hL-hR

balance factor of x = height of left subtree of x 

– height of right subtree of x

– balance factor of every node x, bf(x) , is – 1, 0, or 1

5

• The new tree is not an AVL tree only if you reach a node 
whose balance factor is either 2 or –2

• this case is said the tree has become unbalanced

Height Of An AVL Tree

• The height of an AVL tree that has n nodes 
– is at most 1.44 log2 (n+2)

• The height of every binary tree that has n nodes 
– is at least  log2 (n+1)

log2 (n+1) <= height <= 1.44 log2 (n+2)

• The height or the depth of an AVL tree is at most O(log2n)

• Search for any node cost O(log2n)

• Inserts or deletes cost O(log2n), even in the worst case
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Unbalanced AVL tree

• The new tree is not an AVL tree only if you reach a node 
whose balance factor is either 2 or –2

• this case is said the tree has become unbalanced
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Rotations Types

For a new node Y, let A be the nearest ancestor of  Y

Single Rotations

• LL :  
– Y is inserted in the left subtree of the left subtree of A

• RR : 
– Y is inserted in the right subtree of the right subtree of A

Double Rotations

• LR : is RR followed by LL  
– Y is inserted in the right subtree of the left subtree of  A

• RL : is LL followed by RR  
– Y is inserted in the left subtree of the right subtree of  A
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RR
• Be inserted in the right subtree of the right subtree of A

• RR : adjustments to be rebalanced 
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template <class E> 
void AVLTree<E>::RotateL (AVLNode<E> *& ptr)
{ //右子树比左子树高: 做左单旋转后新根在ptr

AVLNode<E> *subL = ptr;
ptr = subL->right;
subL->right = ptr->left;
ptr->left = subL; 
ptr->bf = subL->bf = 0;

}
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• Be inserted in the left subtree of the left subtree of A

• LL : adjustments to be rebalanced 

LL(右单旋转 )
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template <class E>
void AVLTree<E>::RotateR (AVLNode<E> *& ptr) 
{ //左子树比右子树高, 旋转后新根在ptr

AVLNode<E> *subR = ptr;             //要右旋转的结点
ptr = subR->left;
subR->left = ptr->right;

//转移ptr右边负载
ptr->right = subR;   //ptr成为新根
ptr->bf = subR->bf = 0;

}
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• Be inserted in the right subtree of the left subtree of A

• RL : adjustments to be rebalanced 
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Rotated 
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template <class E>
void AVLTree<E>::RotateLR (AVLNode<E> *& ptr) 
{  AVLNode<E> *subR = ptr;

AVLNode<E> *subL = subR->left;
ptr = subL->right;
subL->right = ptr->left;
ptr->left = subL;

if (ptr->bf <= 0)  
subL->bf = 0;

else subL->bf = -1;
subR->left = ptr->right;
ptr->right = subR;

if (ptr->bf == -1)  
subR->bf = 1;

else subR->bf = 0;
ptr->bf = 0;

}
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• Be inserted in the left subtree of the right subtree of A

• LR : adjustments to be rebalanced 
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template <class E>

void AVLTree<E>::

RotateRL (AVLNode<E> *& ptr) 

{

AVLNode<E> *subL = ptr;
AVLNode<E> *subR = subL->right;

ptr = subR->left;
subR->left = ptr->right; 
ptr->right = subR;

if (ptr->bf >= 0) subR->bf = 0;
else subR->bf = 1;

subL->right = ptr->left;
ptr->left = subL;

if (ptr->bf == 1) subL->bf = -1;
else subL->bf = 0;

ptr->bf = 0;
}; 
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Insertion

• When a new node p is inserted
– AVL tree has become unbalanced

• | bf | > 1 , for any node of the tree

• Method : 

(1) following insert
(2) retrace path towards root 
(3) adjust balance factors as needed
(4) stop when reach a node whose balance factor 

becomes 0, 2, or –2, or the root
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Let : bf(p)=0, pr is parent of p

• bf(pr) have three case :

1. bf(pr)=0 ,after inserted

 Subtree height is unchanged
 No further adjustments to be done

1 0inserted
pr

p
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2. |bf(pr)| = 1
 bf(pr)=0   ,  before inserted
 No further adjustments to be done 
 Subtree height is changed, +1/-1
 Must continue on path to root 
 pr = Parent(pr)

0 -1inserted
pr

p
0 0 -1 0
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3. |bf(pr)| = 2
– Subtree height is reduced by 1
– Must continue on path to root
– Similar to LL and RL rotations 

or 
RR and LR rotations 
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 bf(pr) = 2
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─ bf(q) =-1
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 bf(pr) = -2
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Constructing an  AVL tree
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• keys : { 16, 3, 7, 11, 9, 26, 18, 14, 15 }

• Inserting and rebalancing
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Deletion

1. x is leaf node

2. x has a child
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New Balance Factor Of q

• Deletion from left subtree of q => bf--

• Deletion from right subtree of q => bf++

• New balance factor = 1 or –1

=> no change in height of subtree rooted at q

• New balance factor = 0

=> height of subtree rooted at q has decreased by 1

• New balance factor = 2 or –2

=> tree is unbalanced at q

q
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Imbalance Classification

• Let A be the nearest ancestor of the deleted  node 
– whose balance factor has become 2 or –2 following a deletion

• Deletion from left subtree of A => type L
• Deletion from right subtree of A => type R

• Type R => new bf(A) = 2

• So, old bf(A) = 1
• So, A has a left child B

– bf(B) = 0 =>   Rotation
– bf(B) = 1 =>   Rotation
– bf(B) = –1 =>   Rotation
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1. x is leaf node
– Remove X

2. x has a child
– Replace X by the child

– Remove the child

3. x has two children
─ Replace X by Y

─ Y is the inorder predecessor or the the inorder successor of X

─ Remove Y

Deletion
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• 1  bool shorter = true

– Notes : subtree height is unchanged or reduced

• 2  For every node, new balance factor depends on 

– shorter

– bf(X) 

– bf(child(X))

• 3 Must continue on path every p from parent(X) to root

– if shorter=false stop

– else

A  Boolean Variable
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1) Old bf(p)=0   and  left/right subtree height of p is reduced

then 

New bf (p)=1/-1

shorter=false

36

2)  Old bf (p)= <>0  and  the heighter subtree of p is reduced

then 

New bf (p)= 0

shorter=true

p
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How to rebalance

─ Rotation : the subtree is reduced

─ Let  q = the heighter subtree root 

─ Then

3) Old bf (p)= <>0  and  the shorter subtree of p is reduced

then 

New bf (p)= 2/-2  =>  imbalance

shorter=true
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a) Old bf (q)= 0

Rotated LL or RR to rebalance
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b) Old bf(q)= bf(p)

Rotated LL or RR to rebalance

New bf(q)= bf(p)=0

shorter=true

Must continue on path to root
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c) Old bf (q) = -bf (p)

Rotated LR or RL to rebalance, form q to p

New bf(root) =0, the bf of  other must be adjusted
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Rotation Frequency

• Insert random numbers

– No rotation …   53.4% (approx)

– LL/RR         …    23.3% (approx)

– LR/RL         … 23.2% (approx)
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//AVL树结点的类定义

#include <iostream.h>
#include “stack.h”
template <class E>
struct AVLNode : public BSTNode<E> 
{

int bf;
AVLNode() { left = NULL; right = NULL; bf = 0; }
AVLNode (E d, AVLNode<E> *l = NULL,  

AVLNode<E> *r = NULL) 
{ data = d;  left = l;  right = r;  bf = 0; }

};

Class Definition
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1. Doubly linked list and position of k known

2. Position for insertion known

Operation Sequential list Linked list AVL tree

Search for k O(log n) O(n) O(log n)

Search for jth item O(1) O(j) O(log n)

Delete k O(n) O(1)1 O(log n)

Delete jth item O(n-j) O(j) O(log n)

Insert O(n) O(1)2 O(log n)

Output in order O(n) O(n) O(n)

Compares the Worst-Case Times
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//平衡的二叉搜索树（AVL）类定义

template <class E>
class AVLTree : public BST<E>
{
public:

AVLTree() { root = NULL; } //构造函数

AVLTree (E Ref) { RefValue = Ref; root = NULL; }
//构造函数：构造非空AVL树
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int Height() const;   //高度
AVLNode<E>* Search (E x, 

AVLNode<E> *& par) const;  //搜索

bool Insert (E& e1) { return Insert (root, e1); } //插入
bool Remove (E x, E& e1)

{ return Remove (root, x, e1); }    //删除

friend istream& operator >> (istream& in, 
AVLTree<E>& Tree); //重载：输入

friend ostream& operator << (ostream& out,
const AVLTree<E>& Tree);   //重载：输出
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protected:
int Height (AVLNode<E> *ptr) const; 

bool Insert (AVLNode<E>*& ptr, E& e1);
bool Remove (AVLNode<E>*& ptr, E x, E& e1);
void RotateL (AVLNode<E>*& ptr); //左单旋
void RotateR (AVLNode<E>*& ptr); //右单旋
void RotateLR (AVLNode<E>*& ptr); //先左后右双旋
void RotateRL (AVLNode<E>*& ptr); //先右后左双旋

};

Advanced Tree Structures

• self-adjusting data structure
– Dynamic collections of elements

• Such as

– Union-Find Sets

– AVL Trees

– Red-Black Trees

– Splay Trees

– Tries
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1. Doubly linked list and position of k known

2. Position for insertion known

Operation Sequential list Linked list AVL tree

Search for k O(log n) O(n) O(log n)

Search for jth
item

O(1) O(j) O(log n)

Delete k O(n) O(1)1 O(log n)

Delete jth item O(n-j) O(j) O(log n)

Insert O(n) O(1)2 O(log n)

Output in order O(n) O(n) O(n)
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