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Abstract—In this paper, we propose a secure lightweight and
thing-centered IoT communication system based on MQTT, SecT,
in which a device/thing authenticates users. Compared with a
server-centered IoT system in which a cloud server authenticates
users, a thing-centered system preserves user privacy since the
cloud server is primarily a relay between things and users and
does not store or see user data in plaintext. The contributions
of this work are three-fold. First, we explicitly identify critical
functionalities in bootstrapping a thing and design secure pairing
and binding strategies. Second, we design a strategy of end-
to-end encrypted communication between users and things for
the sake of user privacy and even the server cannot see the
communication content in plaintext. Third, we design a strong
authentication system that can defeat known device scanning
attack, brute force attack and device spoofing attack against
IoT. We implemented a prototype of SecT on a $10 Raspberry
Pi Zero W and performed extensive experiments to validate its
performance. The experiment results show that SecT is both
cost-effective and practical. Although we design SecT for the
smart home application, it can be easily extended to other IoT
application domains.

I. INTRODUCTION

The popularity of Internet of Things (IoT) has attracted the

attention of hackers. On Oct. 21, 2016, a huge DDoS attack

from the Mirai botnet was deployed against Dyn DNS servers

and shut down a number of web services including Twitter

[1]. The IoT reaper botnet was discovered in 2017 [2] and

exploited newly found vulnerable IoT devices. Various attacks

have been discovered against IoT devices, including attacks

against IoT device hardware [3], operating system/firmware

[4], application software [5] and networking protocols [1], [6],

[7]. A complicated attack may exploit multiple vulnerabilities

to achieve its goal. For example, Stuxnet exploits various

Microsoft Windows vulnerabilities to attack specific industrial

control systems such as those in Iran [4]. It can be observed

an IoT device is subject to cyber/network attacks because it

is connected to the Internet/network and has vulnerabilities.

An IoT system is as strong as the weakest link. This paper

focuses on security issues at the network protocol level.

As an intuitive IoT application domain, smart home has

attracted both manufacturers and attackers recently. We want

to connect various household appliances to the Internet for

easy access and automated control. We see a variety of

smart home products on market, including smart plugs, smart

bulbs, smart surveillance/security cameras, Amazon Echo and

Google Home. A smart home IoT system is often composed

of three major components: device/thing, cloud server and

controller (e.g., app on a smartphone). Based on who authen-

ticates a user/controller for the use of an IoT device, we can

categorize a smart home system into server-centered and thing-

centered systems. In a server centered smart home system, the

cloud server authenticates the user. In a thing-centered smart

home system, the device/thing itself authenticates the user.
In this paper, we focus on the thing-centered smart home

system. Although the server-centered smart home system

dominates the market, there are thing-centered smart home

products such as those from DLink, Xiongmai and Edimax.

The major advantage of a thing-centered smart home system

is it preserves user privacy since the server is mainly a relay

between a user and thing in a thing-centered system. Recall a

smart home system is often behind network address translation

(NAT) and requires a relay on the Internet so that the device

builds a persistent connection to the relay server and a user can

control the device from the Internet. It does not store much

of user data. Another advantage is since a thing stores user

credentials and the server is merely a relay, it avoids the single

point of security failure in case that a server is compromised.
The major contributions of this paper are summarized as

follows.

1) We explicitly identify critical functionalities in boot-

strapping a thing based on our analysis of commer-

cial products. Pairing refers to how a user claims the

ownership of a device and establishes a communication

venue with the thing. Binding is defined as how a thing

is connected to the Internet and the user/controller is

associated with the thing over the Internet. We design

secure bootstrapping strategies and establish the root of

trust for things.

2) We design an end-to-end encrypted communication

strategy to protect user privacy. Our system uses the

lightweight IoT communication protocol, MQTT, which

does not provide end-to-end encryption between a thing

and user. With end-to-end encryption, even the server

cannot see the plaintext communication content between
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the thing and user.

3) We design a strong authentication system that can defeat

known device scanning attack, brute force attack and

device spoofing attack. Secure bootstrapping serves as

the root of trust in our thing-centered IoT system. It

ensures that later operation is secure.

4) We implemented a prototype of the proposed system as

a smart plug on Raspberry Pi and performed extensive

experiments to evaluate the networking performance and

cryptographic operation performance. The experiments

on a $10 Raspberry Pi show that our deign is efficient

and practical.

The rest of this paper is organized as follows. We introduce

background and problem statement in Section II. In Section III,

we elaborate key techniques employed by our thing centered

secure IoT communication system. We present the detailed

communication protocol of our system in Section IV. Security

analysis is presented in Section V. We evaluate the thing

centered secure IoT system SecT in Section VI. Related

work is presented in Section VII. We conclude the paper in

Section VIII.

II. PROBLEM STATEMENT

In this section, we first introduce our previous research

[6], [7], which analyzes thing centered smart home systems.

We then summarize security issues of those systems, which

often lack necessary security measures to counter local and

cyber attacks. In a local attack, the adversary will be in the

proximity of a victim home. In a cyber attack, the adversary is

on the Internet and attacks remotely. In this section, we briefly

introduce such systems and identify the security issues.

A. Background

Fig. 1. A typical home automation loT system architecture

Figure 1 shows a typical home automation loT system ar-

chitecture, which normally has three basic components: thing,

controller, and server. 1. A thing can refer to a wide variety of

devices connected to the Internet, such as IP cameras, smart

plugs and smart lights. We will use the term thing and device
interchangeably in this paper. 2. The controller is usually an

application on a PC, smartphone or tablet of a user. We will

use the term controller and user interchangeably in this paper.

3. A server is often hosted in a cloud and connects things and

controllers together.

For home automation, a thing is often behind a wireless

router, which adopts NAT and is the key component forming

a local network of home systems. An IoT system often

implements two suites of protocols: local communication

protocol and remote communication protocol. With the local

communication protocol, things and controllers communicate

through the router and may not need the public Internet. With

the remote communication protocol, controllers communicate

with things using the server as a relay since things are behind

routers with NAT and normally cannot communicate with

things. In this case, things often build a persistent connection

with the server.

We carefully studied Edimaxs smart plugs (over $45 on

Amazon) and IP cameras (over $60 on Amazon) [6], [7].

Without loss of generality, this paper uses the Edimax smart

plug system as an example in our discussion. The Edimax

smart plug system is a thing centered IoT system where a

thing authenticates a controller and its architecture is similar

to the one in Figure 1. Now we introduce the bootstrapping
process of the Edimax smart plug system. When the Edimax

device is used for the first time, it works as an open AP, the

controller connects to the open AP and configures the device

so that the it can connect to the Internet. We denote the process

that the controller establishes a communication venue with

the device as pairing. When the Edimax smart plug controller

pairs with the device, the communication venue is the open

AP. After pairing, we have the binding process, i.e. how the

controller will be associated with the device over the Internet.

In the case of Edimax smart plugs, the controller obtains the

MAC address of the device. The device then registers itself to

a cloud server, denoted as the registration server. To control

the device, the controller sends the authentication information

with the device’s MAC address to the registration server. The

MAC address is used to associate/bind the controller with the

device. The registration server then relays the authentication

credential to the device for authentication. Once authentication

is passed, a token is created and distributed to both the device

and controller. Another cloud server, denoted as the command

relay server, is used to relay the control command between

the controller and device.

B. Issues

We reverse engineered the communication protocols of the

Edimax smart plug and IP camera system and identified a few

critical security vulnerabilities.

• There is no encryption of communication traffic. So

it is easy to perform protocol analysis although some

obfuscation strategies are used.

• In the pairing process, the open AP on the device may

be abused. The risk of such practice may be small in

a private setting like a home. However, for deployment

in a public environment, anybody with access to the

devices can reconfigure the system and may break into

the system. The adversary could sniff the unencrypted

traffic and get the home wireless router’s passcode sent

from the controller app to the device.

• In the binding process, the device’s MAC address is used.

However, the MAC address is predictable. This allows the
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attacker to perform the device scanning attack to find the

status of all smart plugs.

• In terms of authentication, the user name is fixed as

”admin”. The device does not limit the password attempts

by a controller so that an attacker can infer the user’s

password through brute force attacks. Since only one

way authentication of the controller by the device is

performed, the attacker can launch the device spoofing

attack, which registers a spoofed plug on the cloud server

and waits for a user’s authentication credential being sent

from the controller. Using the credential, the attacker can

completely control victim smart plugs.

The goal of this research is to address these issues for a

thing-centered IoT system.

III. SECURE THING-CENTERED IOT SYSTEM FRAMEWORK

In this section, we present our thing centered secure IoT

system design that addresses security issues discussed in

Section II. Our system uses the lightweight IoT communi-

cation protocol MQTT [8]. Therefore, we will first present

the security features of MQTT and introduce end-to-end

encryption for MQTT that does not have this feature. We then

introduce secure pairing that allows only the owner of a thing

to communicate with the thing. We present secure binding

that connects the thing to the Internet and safely associate

the user/controller with the thing over the Internet. At last,

we discuss authentication between things (devices), controllers

(users) and the server (broker) in an IoT environment in order

to protect these entities.

A. MQTT and End-to-end Encryption

MQTT is a messaging broker system and uses a pub-

lish/subscribe protocol based on a ”hub and spoke” model.

The hub is the server/broker and clients are the spokes. Clients

communicate with each other through the hub (broker/server)

using messages. A topic is a namespace for messages on the

broker. The message is relayed by the broker between clients.

A client can subscribe to topics and publish messages to topics

simultaneously. Clients do not need to initialize a topic before

subscribing and publishing, and the broker will process the

request automatically. MQTT supports mutual authentication

through SSL/TLS and the pre-shared-key based encryption

between a client and the server. It also supports the user-

name/password authentication while the username/password

authentication needs link encryption provided by SSL/TLS.

We adopt MQTT since it is lightweight and its communica-

tion overhead is low. An MQTT packet can be only 2 bytes. It

is used by many IoT platforms including Amazon AWS IoT,

Intel IoT, Microsoft Azure IoT and Google IoT platforms.

However, MQTT does not provide the feature of end-to-

end encryption, which is necessary in case that clients may

not want to disclose its communication content to the cloud

server or we should provide such option to users. Recall that

the MQTT server forwards messages between clients such

as a controller/user and a device. We want the end-to-end

encrypted communication between a user and a device so that

the server does not know the content for the purpose of user

privacy. The challenge is how the user and device perform

key exchange. We can use the pre-shared-key (PSK) scheme.

That is, at bootstrapping, the user and the device establish the

pre-shared master key that will be used later to create session

keys encrypting their communication. The pre-shared master

key shall be updated after a period of time for freshness. If the

user gets a certificate from the device, then the authenticated

Diffie-Hellman key exchange can be used. That is, during the

key exchange process, the user and device sign the messages

they send out to the other party. Once the key exchange is

completed, the device and the user will get the negotiated

session key for encrypting MQTT messages. The cloud server

forwards encrypted messages between users and devices. As a

result, even if an attacker compromises the server, she cannot

get the message content without the encryption key.

B. Secure Pairing

When the thing is used for the first time, a controller should

be able to communicate with it at the bootstrapping time. It is a

common practice in industry that an IoT device is open for any

user to pair with the device and configure it. For example, an

IoT device works as an open access point (AP) that a user can

connect to and perform configurations on. However, anybody

can sniff and connect to such device. We have to address how

a user can claim the ownership of the device and securely

connect to and configure the device. Our philosophy of the

ownership is that the device will display a secret message on

screen, and whoever sees the message is the owner. Instead of

working as an open AP, the IoT device can use Wi-Fi Protected

Access II (WPA2) and display a onetime passcode on an LCD.

The user can use this passcode to connect to the IoT device.

Once a user is done with pairing and configuration, the IoT

device cannot be reset or get into the AP mode displaying a

onetime password unless the owner explicitly unpairs herself

(i.e., deletes her account stored within the device) and the

device. Once the user relinquishes her ownership, the device

is reset to the factory setting and another user can take the

ownership, pair with the IoT device, configure and use it. Only

the owner can work as an administrator and authorize other

users to operate the IoT device. In this case, we can guarantee

that at the bootstrapping time, only the owner of the device can

pair her controller with the device and exchange information

during the next binding process. An attacker cannot connect

to the device in this process and obtain the device information

in the binding process by sniffing.

C. Secure Binding

Secure binding is another process of bootstrapping so that

the server can associate a controller/user with a device and

relay messages correctly between them on the Internet. Our

secure binding process has two major functions: 1. The

controller should bind the thing to the Internet, for example,

home WiFi. The controller can require a user to input the

WiFi SSID (Service Set Identifier) and passcode of a wireless

router and send the information to the thing, which can then
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connect to the Internet. Because of secure pairing, binding

is secure. For example, the home WiFi passcode will not be

subject to sniffing. 2. The thing generates a random MQTT

topic and gives it to the controller. This random MQTT topic

is unpredictable by a third party and will be used for later com-

munication over the Internet between the controller and thing,

which subscribe and publish to this random topic. Therefore,

even if the server serves a large number of controllers and

things, other controllers and things which may be malicious

cannot subscribe and publish to random topics that are not

assigned to them.

D. Authentication

Table I lists all types of authentication that we should

address between things (devices), controllers (users) and the

server (broker) in an IoT environment. We use a MQTT server

in this paper. Table I also lists the potential authentication

strategies. Recall we are developing a thing-centered authen-

tication system while considering security of all components

in the IoT system.

• A thing authenticates a controller for the purpose of

device operation through password or certificate authenti-

cation. 1. The thing can act as a CA (certificate authority).

The controller generates a public key pair (public key,

private key) and the thing signs the certificate for the

controller. The controller stores its certificate and the

thing’s certificate for the purpose of authentication. We

can see that in this case, each thing/device performs as

a CA and generates a certificate for itself and its users.

2. The thing can also generate a username/password pair

and give it to the controller for later authentication.

• A thing authenticates the server for its genuineness. The

thing can perform a SSL/TLS certificate based authenti-

cation of the server.

• The controller authenticates the server for its genuineness.

A controller can perform a SSL/TLS certificate based

authentication of the server.

• The controller authenticates the thing for the use of

resources on the thing (if there is such need) through

password or certificate authentication. This case is rare in

the current IoT application domains although it is possible

that a device may want to access the resources at the

controller.

• The server authenticates a thing for the use of the

server through certificate authentication. The purpose is

to prevent the abuse of the server by people other than

those who own products from the specific manufacturers

and its partners. It will also defeat the device spoofing

attack discussed in Section II. The manufacturers have to

perform as a CA and generate a certificate for each of its

devices. The server stores the manufacturer’s certificate

and certificates of all IoT devices. To authenticate a thing,

the server obtains the thing’s certificate, checks if it is

in its database and then perform challenge and response

protocol in order to check if the thing has the correct

private key.

• The server authenticates the controller for the use of the

server through security tokens. Recall that in the binding

process, the thing creates a random topic for the thing

and controller communicating with each other. We treat

this random topic as a security token. Users who know

the security token can use the server, which implements

topic restriction through an access control list (ACL).

TABLE I
AUTHENTICATION BETWEEN THINGS, CONTROLLERS AND SERVER.

SECURITY TOKENS HAVE TO BE UPDATED REGULARLY.

�→ Thing Controller Server
Thing ø Password/Certificate Certificate

Controller Password/Certificate ø Certificate
Server Certificate Token ø

IV. COMMUNICATION PROTOCOL

In this section, we first introduce the architecture of SecT, a

lightweight secure thing-centered IoT communication system

and then present the communication protocol.

A. Architecture of the System

Figure 2 shows the architecture of SecT, which has four

components, including controller, cloud server, thing/device (a

smart plug as an example), and local server which is hosted

on the thing. The thing connects to the Internet through WiFi

(while Ethernet is an option too). The controller is an app

on a PC, smartphone or tablet. Both cloud server and local

server are MQTT servers. The core functionality of the cloud

server is to relay messages between controllers and things.

It also authenticates controllers and things to prevent abuse

of the server. If the device and controller are in the same

local network, the controller can communicate with the device

locally and control it through the local server on the thing.

Otherwise, they can communication over the Internet through

the cloud server. Recall the cloud server is needed since a

thing is often behind NAT and a thing cannot communicate

with a controller directly over the Internet.

Fig. 2. System Architecture

B. Communication Protocol

1) Bootstrapping phase: When a thing is used for the first

time, a controller pairs with the thing through WiFi on the

thing, communicates with the thing through the local MQTT
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server, connects the thing to the Internet and binds with

an authenticated user. After the paring and binding phases,

the controller and the thing negotiate three authentication

credentials: 1. a secret MQTT topic binding the thing and

controller. 2. a username/password pair for a thing authenti-

cating a controller, 3. a master encryption key for the end-to-

end encryption between the thing and controller. These three

authentication credentials should be saved in a configuration

file locally in the device.

Fig. 3. Paring and Binding Phase

The detailed procedure shown in Figure 3 is introduced as

follows. STEP 1: When the device powers up for the first time,

it works as a WPA2 access point (AP). We call it the Thing-
AP to differentiate it from a home wireless router. Thing-
AP displays a onetime WPA2 passcode on an LCD screen.

Meanwhile, the device starts a local MQTT server ready to

communicate with the controller.

STEP 2: The controller connects to Thing-AP using the

displayed onetime passcode. Recall our philosophy is who sees

this passcode is the owner of the thing. At this time, secure

pairing is completed. The secure pairing process consists of

STEP 1 and STEP 2.

STEP 3: The thing generates a random MQTT topic de-

noted as Ttoken, which is used to bind the thing and controller

at the cloud server, and sends it to the controller using a

known topic Tlocal,default through the local MQTT server

over the secured WiFi. Ttoken is a randomly generated 25-

character string from 10 digits, 26 upper-case and 26 lower-

case alphabetic letters. It has 25 ∗ log2(62) = 148.85 bits of

entropy and is strong enough to defeat brute force attacks [9].

STEP 4: The controller provides the home wireless router’s

SSID and passcode to the device through Thing-AP. By far

secure binding is completed. The secure binding includes

STEP 3 and STEP 4.

STEP 5: The thing also generates and provides a pair of

username/password for later authentication of the controller

by the IoT device. We call it the Ctlr-U/P. Recall that the

thing/device and controller can also use the certificate based

authentication in which the device signs a certificate for the

controller. STEP 5 sets up the authentication between the

controller and thing.

STEP 6: The controller and the device negotiate a master

encryption key that is used later to encrypt later communica-

tion. If certificate based authentication is used for the thing

authenticating the controller, the thing and controller can also

perform key exchange later. STEP 6 sets up the end-to-end

encryption.

STEP 7: We also want to encrypt the communication

link between the MQTT server and controller/thing. For re-

mote communication over the Internet, we use SSL/TLS. For

communication in a local network, we use the pre-shared-

key (PSK) supported by MQTT. Therefore, the last step of

bootstrapping phase is the thing creates a PSK and gives

it to the local MQTT server and controller. The pre-shared

key scheme is used between the local MQTT server and

controller/thing. Now for local use, even the local (home) WiFi

is open, communication in our IoT system is encrypted.

2) Registration phase: After bootstrapping, the thing will

reboot. It connects to the home WiFi router using the WiFi

credentials obtained in STEP 4. It will register the random

topic Ttoken to the cloud server, which puts Ttoken into its

topic access control list (ACL). The detailed procedure shown

in Figure 4 is introduced as follows.

Fig. 4. Registration Phase

STEP 8: Once the thing has access to the Internet, it builds

a SSL/TLS connection with the cloud MQTT server. Here

the server and thing will perform mutual authentication. The

thing authenticates the server through the server’s certificate.

The server can authenticate the thing through the thing’s

certificate or pre-defined username/password. Here we assume

that the cloud server knows the thing’s certificate or pre-

defined username/password, which should be configured by

the manufacturer.

STEP 9: After authentication, the thing communicates with

the server through a known MQTT topic Tcloud,default and

registers the random topic Ttoken into the cloud server’s topic

access control list. From now on, a specific thing and its

controllers/users can use the negotiated random topic Ttoken

to communicate with each other.

3) Thing Discovery Phase: We now introduce how the

controller finds and communicates with the thing. After boot-

strapping, the controller app gets into the thing discovery phase

and tries to find the device. Recall the thing runs the local

MQTT server and listens for any connection request. The

detailed procedure is introduced as follows.

STEP 10: The controller broadcasts a local server host IP

request packet in the local network through the simple service

discovery protocol (SSDP) [10]. Every time the controller tries
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to control the device, it repeats STEP 10 to determine whether

the controller and the device are in same local network.

STEP 11: The device responds with its IP address to the

controller’s SSDP request.

4) Data Communication Phase: Once the controller gets

the local server IP through thing discovery, it will send two

request packets to the thing for connection checking. One

packet goes to the local MQTT server and another one goes

to the cloud MQTT server. If authentication is successful,

both local and remote MQTT servers will respond. If the

device receives two identical response messages, both local

and remote connections are successful. The detailed procedure

is shown in Figure 5 and introduced as follows.

Fig. 5. Data Communication Phase

STEP 12: The controller sends a request message to the

local MQTT server. For brevity, assume we use password au-

thentication between the controller and thing. If authentication

is successful, the local MQTT server forwards the valid request

message to the thing using the negotiated random topic Ttoken.

STEP 13: The thing gets the requested message and re-

sponds back to the controller through the local MQTT server

using Ttoken.

STEP 14: The controller sends a request message to the

cloud server. After authentication, the cloud server forwards

the valid request message to the thing using the negotiated

random topic Ttoken.

STEP 15: The thing responds back to the controller through

the cloud server using Ttoken.

Every time the controller tries to control the device, it

repeats STEP 12 and STEP 13 locally or STEP 14 and

STEP 15 remotely for requesting the current device status.

All messages are in JSON [11] format and are encrypted with

the AES-256-CBC mode [12]. There are usually three kinds

of messages transmitted between the controller and thing: 1.

device status request, 2. device response message, 3. control

command. Note that after a period of time, the thing and

controller will run STEP 6 to update the master encryption

key.

5) Add/Delete User Phase: Only the owner of the device

can authorize other users to operate the IoT device. The owner

can send a request message to add or remove a user to the

device. For adding a new user, the device will generate and

provide the new user’s authentication credentials to owner.

After the new user connects to local MQTT server with

credentials provided by owner, it initiates STEP 6 to negotiate

a master encryption key. Then the device registers all new

user’s information to the cloud server. The detailed procedure

shown in Figure 6 is introduced as follows.

Fig. 6. Add New User

STEP 16: The owner sends a request message to the device

for adding a new user.

STEP 17: The device generates a username/password pair

Ctlr-U/P and a random topic Ttoken for the new user. Then

the device generates a QR code containing these credentials

and sends back to the owner.

STEP 18: The new user obtains the device information by

scanning the QR code provided by the owner and connects to

the device.

STEP 19: The new user repeats STEP 6 to negotiate the

master encryption key with the device.

STEP 20: The device repeats STEP 8 and STEP 9 to

register the new user’s random topic Ttoken to the cloud

server’s topic ACL.

In order to remove the existing user, the owner sends a

delete request to the device. The device deletes the user’s

authentication credentials and sends a delete request to the

cloud server. The cloud server will remove the user’s random

topic Ttoken from its topic ACL.

V. SECURITY ANALYSIS

In this section, we perform the security analysis of our

thing-centered IoT system.

A. Sniffing Attack

In the bootstrapping phase, the thing acts as a WPA2

protected AP. Only the owner can see the passcode dis-

played on the LCD of the thing. Therefore, all the boot-

strapping messages are encrypted, including the negotiated

username/password pair, encryption key, random MQTT topic

and the home wireless router passcode sent from the controller

to the thing.

In later phases including the registration phase and data

communication phase, communication with the cloud server

is SSL/TLS encrypted. Communication between the controller

and thing is encrypted and even the cloud server cannot see

the content. In the case of local communication in a local

network, even if the home wireless router is not encrypted, the
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communication between the controller and thing is encrypted

through the local MQTT server’s PSK encryption. All the

negotiated keys will be updated after specific period to ensure

the freshness of those keys.
In the thing discovery phase, a local attacker with access to

the home WiFi router may also perform the thing discovery

and obtain the thing’s local IP address. However, since a

local attacker does not know the pre-shared key between the

controller and local MQTT server, the local attacker cannot

even connect to the local MQTT server hosted on the thing.

B. Replay Attack
Here we consider an extreme case: the cloud server is

compromised and may replay a captured command from the

controller to the thing. To defeat such replay attack, each

command message contains a timestamp, and the device will

record the timestamp of the latest received valid message.

When a new message arrives, the thing decrypts and compares

the new timestamp with the recorded timestamp. If the new

timestamp is earlier than or equal to the recorded latest

timestamp, the message is invalidated and the device will

ignore this command. From this discussion, we can also see the

benefit of the thing-centered IoT system. Even a compromised

cloud server cannot compromise the security of IoT devices.

C. Device Scanning Attack, Brute Force Attack and Device
Spoofing Attack

Without the correct credentials, an attacker cannot even

connect to the cloud server or local server and abuse it. The

device scanning attack against Edimax smart plugs cannot be

deployed against our system. The random MQTT topic Ttoken

generated in the pairing and binding phase has 148.85 bits

of entropy and cannot be practically predicted. The random

topic will be updated after specific period. All such topics are

registered in the cloud server authentication database along

with the corresponding device and user information. The

device and thing can only subscribe and publish to their own

topics. The cloud server only accepts and forwards messages

matching the topic and user information in its authentication

database. It is difficult for an attacker to obtain response

messages from other devices than her own, or receive control

command messages from other users. Therefore, the attacker

cannot predict the random topic and practically perform the

device scanning attack or brute force attack since the topic is

too long and random.
The device spoofing attack is a great challenge for many

state-of-the-art IoT products including the Edimax smart plugs

and IP cameras. This attack is infeasible against our IoT

system since the attacker cannot predict the random MQTT

topics of other IoT devices in our system. Even if a compro-

mised cloud server leaks such random topic to the attacker,

the attacker does not know the credentials negotiated between

the controller and thing. Those credentials enable mutual

authentication between controllers and things.

VI. EVALUATION

In this section, we present our experiment setup and results.

A. Experiment Setup

The experiment setup is shown in Figure 7. The example

system emulates a smart plug system and consists of Raspberry

Pi Zero W, a 2×16 LCD screen and a power relay enabled

strip, denoted as plug.

Fig. 7. Device Setup

The controller is a python program on a PC while we will

develop an app for smartphones and tablets. The Raspberry

Pi Zero W is installed with a full fledged Linux system

and shipped with General-purpose input/output (GPIO) pins,

HDMI display port, USB ports, Ethernet port and onboard

WiFi (in Version 3 and Version Zero W). It allows the creation

of various IoT devices such as a smart plug. We connect a

power relay enabled plug to Raspberry Pi through GPIO pins.

The Pi controls the plug through GPIO and turns on/off the

connected plug. An LCD screen is connected to Raspberry Pi

through GPIO and used for showing the onetime passcode of

the WPA2 AP WiFi during the pairing process. The MQTT

server is installed on the device for local communication.

Both the cloud server and local server use Mosquitto [13],

which is a popular open source implementation of the popular

IoT communication protocol MQTT. Mosquitto itself provides

authentication strategies including password, SSL/TLS mutual

authentication, pre-shared key (PSK) encryption and authen-

tication. Mosquitto also supports authentication plugins [14].

We use MySQL as the authentication back-end on Mosquitto.

The database has a user table and an ACL table. This plugin

can perform authentication (user table for checking user-

name/password) and authorization (ACL table for authorizing

connection).

B. Networking Performance

Figure 8 shows the time required for sending a command

controlling the device through the local server and cloud

server. We run each performance test 30 times and show the

average time. All communication links are SSL/TLS protected.

End-to-end encryption is implemented. It can be observed that
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the average runtime is tens of milliseconds for both remote and

local control with Raspberry Pi 3 and Raspberry Pi Zero W.

The average runtime for local and remote control with the

Edimax smart plug is 40.204ms and 335.260ms respectively.

Compared with the Edimax smart plug system, the runtime of

a thing centered secure IoT system is feasible and acceptable.

Fig. 8. Control Command Response Time

C. Cryptographic Operation Performance

Figure 9 shows the cryptographic operation performance on

Raspberry Pi Zero W, which uses a system on chip (SoC)

Broadcom BCM2835 and ARM11 CPU running at 1GHz [15].

We use the openssl library. prime256v1 and secp384r1 refer to

NIST curves P-256 and P-384. secp256k1 is used in Bitcoin

and uses the ECDSA curve. Figure 9 (a) gives the time for

generating public/private key pairs, Figure 9 (b) gives the

time for generating certificates and Figure 9 (c) gives the

time for certificate verification. We run each cryptographic

operation 30 times and show the average time. It can be

observed that on a $10 Raspberry Pi Zero W, Elliptic Curve

performs significantly better than RSA and the correspond-

ing cryptographic operation has acceptable performance. For

example, the average time of creating a RSA 1024-bit key

pair is around 1112ms while the average time of creating a

prime256v1 key pair is around 108ms. The average time for

RSA 1024 certificate verification is around 337ms while the

average time for prime256v certificate verification is around

289ms. The observation is consistent with observations made

in the bibliography in other contexts. The time taken by these

Elliptic Curve operations are acceptable while RSA 2048 takes

too much time and is not acceptable.

We choose AES-256-CBC to encrypt and decrypt the

MQTT transmitted messages between a thing and a controller.

Each transmitted message is around 180 bytes in the JSON

format.

(a) Key Pairy

(b) Certificate

(c) Certificate Verification

Fig. 9. Time for Cryptographic Operations

Fig. 10. Time for Encrypt/Decrypt

Figure 10 shows the time required for encrypting and

decrypting those messages on Raspberry Pi Zero W. We run

each operation 30 times and show the average time. It can be

observed that the mean of encryption and decryption time is

less than 1ms and very reasonable.
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VII. RELATED WORK

In this section, we review the most related work. It can

be observed that our work is different from related work. We

explore and extend the popular MQTT protocol and build our

system on MQTT. We explicitly identify different phases such

as pairing, binding and authentication setup and address the

security issues in these phases. Our goal is to implement a

practical smart home IoT system prototype.

There are efforts toward the IoT system architecture. In

[16], a secure VIRTUS middleware was developed. Based on

the standard security features of the open XMPP protocol,

VIRTUS middleware provides IoT with a secure communi-

cation channel that is protected by the authentication (via

TLS protocol) and encryption (SASL protocol) mechanisms.

An end-to-end security solution for mobility healthcare IoT

is proposed in [17]. The scenario includes a secure end-user

authentication and authorization based on the certificate-based

Datagram Transport Layer Security (DTLS) protocol, and

secure end-to-end communication based on session recovery.

A lightweight security protocol for the IoT that includes

lightweight encryption, authentication, and key management

is proposed in [18]. This protocol can achieve security and

low resource consumption, and help maintain the sustainability

of the system. According to the investigation and analysis of

the embedded security in the Internet of Things, an embedded

security framework is proposed for IoT as a feature of the

software and hardware co-design method [19].

Authentication and key management are active topics in the

IoT research. A two-way IoT authentication security system

based on the DTLS protocol was proposed and the feasibility

(low overhead and high interoperability) of the system is

proved in [20]. Sima [21] proposes a lightweight security au-

thenticated and key exchange protocol. However, [22] pointed

out the vulnerability of Sima’s protocol and modified Sima’s

protocol to defeat these attacks. For energy-saving in data

encryption, an efficient key generation mechanism is proposed

based on the triangle security algorithm (TBSA) [23]. This

algorithm provides secure data transmission between sensors

for a IoT-based smart home system.

VIII. CONCLUSION

In this paper, we propose SecT, a lightweight secure

thing-centered IoT communication system. We introduce the

key techniques including secure bootstrapping, end-to-end

encrypted communication and device mutual authentication

mechanism. SecT protects user privacy since the cloud server

does not store or see user data in plaintext. We introduce

the communication protocol in detail and have implemented

a real world prototype. We performed extensive experiments

and evaluate both networking performance and cryptographic

operation performance on a $10 Raspberry Pi Zero W. Our

experiments results show that SecT is both cost-effective and

practical. Although we design SecT for the smart home appli-

cation, it may be extended to other IoT application domains.

As future work, we plan to test our design on ra5350f SoC

(symtem on a chip), which is used by Edimax plugs and

cameras, and other popular hardware platform used by IoT

manufacturers.
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