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An Active De-anonymizing Attack Against Tor Web Traffic
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Abstract: Tor is pervasively used to conceal target websites that users are visiting. A de-anonymization technique

against Tor, referred to as website fingerprinting attack, aims to infer the websites accessed by Tor clients by

passively analyzing the patterns of encrypted traffic at the Tor client side. However, HTTP pipeline and Tor circuit

multiplexing techniques can affect the accuracy of the attack by mixing the traffic that carries web objects in a single

TCP connection. In this paper, we propose a novel active website fingerprinting attack by identifying and delaying

the HTTP requests at the first hop Tor node. Then, we can separate the traffic that carries distinct web objects

to derive a more distinguishable traffic pattern. To fulfill this goal, two algorithms based on statistical analysis and

objective function optimization are proposed to construct a general packet delay scheme. We evaluate our active

attack against Tor in empirical experiments and obtain the highest accuracy of 98.64%, compared with 85.95% of

passive attack. We also perform experiments in the open-world scenario. When the parameter k of k-NN classifier

is set to 5, then we can obtain a true positive rate of 90.96% with a false positive rate of 3.9%.
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1 Introduction

As people become increasingly aware of network
security and privacy concerns, significant efforts have
been exerted to develop anonymization techniques to
protect the data privacy of users[1], as well as the privacy
of their locations[2] and communications. For the latter,
various anonymous communication systems have been
proposed and widely used, e.g., OpenSSH, JAP, Tor,
and I2P. Owing to the high security performance, the
popularity of Tor has grown throughout the world.
According to official statistics[3], by the end of March
2017, more than 2.38 million users access the Internet
through Tor, including 180 000 clients that connect via
bridges. To obscure the communication relationship,
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Tor always selects three nodes (entry, middle, and exit
nodes) to build a path. Furthermore, Tor packs all data
into 512-byte transmission units, which are called cells,
to make them indistinguishable.

To compromise the anonymity provided by Tor,
traffic analysis techniques are studied[4–8]. They can
be categorized into two groups[9], namely, end-to-end
attacks[7, 8] and single-end attacks[4–6]. In the end-
to-end attacks, an adversary should first control both
the entry and exit node of a path used by a Tor
client. Then she can passively observe the traffic
patterns on both sides to correlate the traffic of the
sender and receiver. Alternatively, she can actively
modulate the traffic to embed a watermark on one side
and then inspect the watermark[7, 8] on another side to
confirm the communication relationship between the
sender and the receiver. In single-end attacks, also
referred to as Website Fingerprinting (WFP) attacks,
an adversary can passively observe the patterns of
the traffic between the Tor client and the entry Tor
node to infer the websites visited by Tor users. In
practice, such type of adversaries can be an ISP or
a local network administrator. Therefore, it can post
a significant threat to the security and privacy of Tor
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users with the least resources because the adversary in
website fingerprinting is one of the weakest adversaries
in the threat model of existing attacks.

An intense research effort has been made to
demonstrate the feasibility of the website fingerprinting
attack against Tor in recent years[6, 10–12]. The
website fingerprinting attack is always converted
to a classification problem. In general, these studies
improve the attack by exploring new features (such as
the bursts and concentrations of outgoing packets[11])
and modifying the classical classification algorithms.
However, all these studies are limited to the passive
threat model and the extracted features are sensitive
to the network dynamic. For example, we accessed
the CNN website through the same Tor circuit twice
in three minutes, and found that both burst packet
numbers and burst volumes varied dramatically and
can affect the accuracy of the website identification. To
address the problem, He et al.[13] proposed an active
website fingerprinting attack. The main idea is to
identify and delay the HTTP requests from the Tor
client to separate the mixed traffic that carries various
web objects. However, since all the traffic is encrypted,
it is nontrivial to identify the right HTTP requests.
Thus, it spends more time inferring each HTTP request
and leads to a low accuracy of website inference.

In this paper, we propose a novel active website
fingerprinting attack. The main contributions of our
work are as follows.

First, we propose a new threat model for the active
website fingerprinting attack against Tor. In this threat
model, an attacker can control an entry node and
manipulate appropriate cells transmitted between the
entry and middle nodes.

Second, we design two algorithms based on
statistical analysis and objective function optimization,
respectively, and build a general cell manipulation
framework to delay five proper cell positions from a
sequence of cells at the entry node so that the accuracy
of the website identification can be improved.

Third, we design a delay scheduling algorithm
for all the selected cell positions to separate the
response traffic of different web objects. Thus, we can
extract more distinguishable and stable features for
website identification. By carrying out experiments
in the closed-world and open-world scenarios, we
demonstrate the effectiveness and feasibility of our
attack.

The rest of this paper is organized as follows. In

Section 2, we present the related work. In Section 3,
we introduce the background about Tor. We describe
the threat model and propose our active website
fingerprinting attack in Section 4. We provide the
results of our experiments in Section 5. In Section 6,
we conclude this paper and discuss directions for future
work.

2 Related Work

In the past decades, researchers focused on the
website fingerprinting attack against the single-hop
anonymous communication systems and extracted the
web object sizes, packet sizes, packet ordering, inter-
arrival times, and other features to generate website
fingerprints. However, these features are disturbed
because the data are encapsulated into equal-length
transmission units. Herrmann et al.[4] were the first
to launch the website fingerprinting attack against
Tor. They extracted the packet size distribution and
applied multinomial naive Bayes classifier to evaluate
the similarity. By using a dataset containing 775
monitored websites, they obtained an accuracy rate
of only 3%. In 2011, Panchenko et al.[5] proposed
many new features, including total transmitted bytes,
percentage of incoming packets, and occurring packet
sizes. By applying Support Vector Machine (SVM),
they increased the detection rate to 55%. They also
introduced a new attack scenario called open-world.
They believed that the ability of the attacker is limited
and she could not monitor all websites. The attacker
first needs to determine whether a website is on the
monitoring list or not. If the website is on the list, she
also needs to classify it into the right category.

Researchers found that converting packets into cells
for feature extraction could improve the accuracy. Cai
et al.[6] rounded all packet sizes up to a multiple of
600 and extracted ordering and numbers as features.
To improve the performance of the classifier, they used
the optimal string alignment distance as the kernel
function for SVM. Likewise, Wang and Goldberg[10]

reconstructed Transport Layer Security (TLS) records
from packets and rounded the resulted lengths to the
closest multiple of 512. Furthermore, they designed a
heuristic algorithm to remove Sendme cells. By using
a new distance-based metric in SVM, the accuracy rate
reached 91%.

In recent years, website fingerprinting attacks were
futher improved by employing new features and
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classifiers. Wang et al.[11] extracted six types of features
and iteratively adjusted feature weights in the k-
Nearest Neighbor (k-NN) classifier. Panchenko et al.[12]

sampled features from a cumulative representation,
which were robust against dynamics of bandwidth,
congestion, and page load time. They also implemented
large-scale experiments to evaluate the effectiveness.
Hayes and Danezis[14] extended the random forest
technique to select appropriate features and conducted
experiments over standard web pages as well as Tor
hidden services.

Juarez et al.[15] believed that some assumptions of the
attacks were not practical and might make a significant
impact on the efficacy. To address these issues, Wang
and Goldberg[16] discussed several methods to bridge
the gap between laboratory and realistic conditions for
website fingerprinting.

Overall, the aforementioned passive website
fingerprinting attacks cannot deal with the web objects
mixed in the traffic. To address this problem, He et
al.[13] proposed an active attack by delaying HTTP
requests originating from users for a certain period,
which separated responding traffic containing various
web objects. However, they could not accurately
identify the HTTP requests and filter all the control
packets when they modulated the traffic between the
Onion Proxy (OP) and the entry node. It caused a low
accuracy.

3 Background

Tor is a popular low-latency anonymous
communication system that supports TCP-based
applications. The Tor network consists of three
components: the OP, Onion Routers (ORs), and
directory servers. The OP selects three ORs by default
and establishes circuits hop by hop. Multiple TCP
streams can be multiplexed into a single circuit.
To achieve high-performance scheduling, Tor uses
libevent[17] to schedule the read/write events.

Figure 1a illustrates the structure of an equal-sized
Tor cell, including a 3-byte cell header and a 509-
byte payload. The cell header is plaintext, while the
509-byte payload of a Tor cell is encrypted. The cell
header consists of two fields called Circ ID (2 bytes)
and CMD (1 byte), where the Circ ID specifies the
circuit number and CMD indicates the category of the
cell command. Two types of cells, i.e., control cells and
relay cells, are used. The CMD of a control cell contains

Fig. 1 Tor cell format.

padding, create, created, destroy, and other five values.
Moreover, Tor introduced a new type of relay cell in
2008, referred to as Relay Early cell, to prevent users
from building infinitely long paths[18], and the value of
this CMD field was 9[19].

Figure 1b depicts the structure of a relay cell with
a CMD value of 3. It has an additional header at the
front of the payload, containing the StreamID, Digest,
Length, Relay CMD, and Data fields. The Relay CMD
further specifies the subcategory of the payload: relay
data, relay begin, relay end, relay sendme, and so on.
The relay data cells are used to transmit application
data, while the rest relay cells, referred to as relay
control cells, are used to carry control command. The
509-byte payload of a Tor cell is encrypted in the onion-
like fashion. When the cells are delivered to the TLS
layer, the cells are encrypted again. Thus, an adversary
cannot identify the categories of cells if she monitors
traffic on the wire. However, if an adversary controls
the entry node of the circuit used by Tor client, she
can observe the plaintext of the 3-byte cell header and
identify the type of cell in terms of the CMD field.

Figure 2 illustrates the process of creating a circuit
and a stream as well as transmitting data over the
stream. TLS tunnels are first established among OP and
ORs. Then, to create a circuit, an OP sends a create cell
to establish the first hop circuit with the OR1, which is
referred to as entry node. Then, a relay extend cell is
encapsulated into a relay early cell to require the entry
node to extend the circuit to the second hop node, which
is called middle node. Upon deriving this relay extend
cell, the entry node extends the circuit on behalf of OP
by sending a create cell to the middle node. Likewise,
the middle node is asked to extend the circuit to the
third hop, which is referred to as exit node. At this
point, a 3-hop circuit is completely established. The
traffic sent toward the server via the circuit is called
outbound traffic, while the traffic sent toward client is
called inbound traffic. In addition, to avoid infinite-
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Fig. 2 Circuit creation and data transmission.

length circuit attacks and hide the circuit length, the OP
should pack the first 8 data cells in this circuit into relay
early cells. Therefore, the relay extend cell is the first
one encapsulated into a relay early cell.

After the circuit is established, the user can open an
application, e.g., web browser. Then, the OP creates a
stream over the circuit for transmitting the data from the
web browser. A begin cell, including the information
of the IP and port of the remote server, is packed into
the relay early cell to require the exit node to connect
to the remote web server. Once the TCP connection
between the remote server and exit node is built, the
connected cell is sent back to the OP to inform it of the
connection status. Subsequently, the OP can transmit
the data for the web browser over this stream. In fact,
the OP multiplexes multiple streams over this single
circuit to improve efficiency and anonymity.

4 Active Website Fingerprinting Attack

In this section, we first present the threat model and then
introduce our attack, including the cell-delay position
decision algorithm and delay scheduling algorithm.

4.1 Threat model

In our threat model, we assume that an adversary
controls the entry node in a circuit built by victim’s OP.

Then she can actively manipulate the traffic at the entry
node, i.e., delaying the cells. However, the attacker
cannot tamper with the content of the cells. Since Tor
nodes are deployed by many volunteers around the
world, this assumption is reasonable and practical. To
run a stable node in the Tor network, the attacker only
needs to meet certain requirements, e.g., Mean Time
Between Failures (MTBF) and sufficient bandwidth.
Once the attacker’s node satisfies the requirements
of the MTBF and bandwidth, her node can become
the entry node[20]. According to the node selection
mechanism, a powerful attacker can deploy enough
bandwidth of Tor entry nodes; then, a possiblility is that
the OP selects one of the attacker’s entry nodes in terms
of existing analysis[21–23].

4.2 Basic idea

Figure 3 illustrates the basic idea of active website
fingerprinting attack. We manipulate and record the
transmitted cells at the entry node and then perform
the website fingerprinting attack to infer the website
accessed by Tor users. To this end, we first have
to understand Tor’s communication mechanism and
determine when the HTTP data are transmitted. We
identify the positions of HTTP requests in the cell
sequence from the outbound traffic. Furthermore, we
design two algorithms to decide which cell should be
delayed and keep all subsequent cells (including the
current one) in a delay queue. When a specific delay
time is up, all cells in the queue are delivered to the
network until they reach the next cell-delay position.
Finally, we record the entire modulated cell sequences
and extract appropriate features to classify the real

Fig. 3 Basic idea of active website fingerprinting attack.
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destination website.
Figure 4 illustrates the workflow of our active website

fingerprinting attack. It consists of the following five
steps:
� Step 1: Determining the first HTTP request. Since

the HTTP data encapsulated into Tor cells are
transmitted through a three-hop circuit, it is nontrivial
to directly identify the HTTP request at the entry
node. To address this issue, we first analyze the
Tor protocol behaviors, including circuit and stream
establishment, as well as data cell transmission.
Then, we can accurately infer the procedure of the
circuit and stream creation. At this point, the HTTP
data can be transmitted between OP and remote web
server, and the first outbound cell is the first HTTP
request.
� Step 2: Delaying HTTP requests. When OP browses

a certain website, the entry node may receive many
relay cells originating from the OP, including relay
data (HTTP requests) and multiple relay control cells.
Since all these relay cells are encrypted, directly
identifying each HTTP request from the cells is
impossible. In addition, the HTTP request positions
of each website in the cell sequence are different.
Thus, we have to design a general and effective
scheme to find several appropriate HTTP request
positions and then delay them to separate the web
objects. To this end, we design two algorithms
based on statistical analysis and objective function
optimization, respectively. Furthermore, we modify
the code of the Tor transmission mechanism to delay
the selected cells.
� Step 3: Recording Tor cells. We record Tor relay

and relay early cells at the entry node for feature
extraction.
� Step 4: Feature extraction. To generate a fingerprint,

we extract various features from the recorded

Fig. 4 Workflow of active website fingerprinting attack.

cell traces, including total per-direction bandwidth,
outbound cells’ positions, concentration of inbound
cells, and others.
� Step 5: Website classification. Based on the

extracted features, we apply two classifiers in the
closed-world scenario and compare their prediction
ability. Finally, we choose a better one and evaluate
its practical feasibility in the open-world scenario.

4.3 Step 1: Determining the first HTTP request

To locate the first HTTP request, we determine when the
HTTP data are transmitted. As shown in Fig. 2, once a
circuit and a stream are built, the OP begins to transmit
the HTTP data. Therefore, we can observe the circuit
and stream establishment process at the entry node and
infer the cell position of the first HTTP request. We
record the cell transmission pattern, including the cell
sequence, circuit ID, and types of cells.

From these recorded cells, we infer the cell that packs
the first HTTP request. Once the OP starts, it creates
four circuits by default. After these four circuits are
built, users can open the browser to access a website via
OP. Then, OP picks one of these circuits and establishes
TCP streams over this circuit to transmit HTTP data.
The StreamID field in the encrypted cell payload is
used to distinguish various TCP connections established
by the victim’s browser. By using Firefox to browse
the websites through Tor, we find that the OP always
builds two TCP streams before sending the first HTTP
request. At the entry node side, we can obtain a 3-byte
cell header in plaintext for each received cell. Since
all HTTP data are encapsulated in the relay data cells,
we only record two types of cells relayed between the
entry and middle nodes, i.e., the relay cells and relay
early cells, whose values in the CMD field are 3 and
9, respectively. Recall that the first 8 relay cells should
be encapsulated into relay early cells by OP. Since the
first extend cell sent by OP is used to build the second
hop circuit as shown in Fig. 2, we can only record
7 relay early cells and the rest should be relay cells
from the outbound traffic at the entry node. Therefore,
if a circuit is established and used to transmit HTTP
data, we can infer the types of the first 4 relay early
cells in this circuit. The first relay early cell is used
to create circuits and subsequent two are relay begin
cells used to establish two TCP streams. The fourth
cell encapsulates the first HTTP request, which is the
start position of the HTTP data transmission. Since
four circuits are established in advance, three extra relay



Ming Yang et al.: An Active De-anonymizing Attack Against Tor Web Traffic 707

early cells are used to creat the other three circuits.
Thus, the first HTTP request is the seventh cell in the
entire cell sequence.

Figure 5 depicts an example of the cell transmission
between entry and middle nodes when a Tor user
browses a website. We can observe the process of the
four circuit creations. Then, the entry node relays two
cells in the circuit with circuit ID 2315862583 to open
two streams. Therefore, the seventh outbound cell is the
first HTTP request.

4.4 Step 2: Delaying HTTP requests

4.4.1 Deciding cell-delay positions
When we find the position of the first HTTP request,
we should decide the following delay positions for
other requests. In the following data transmission, the
OP sends the relay begin cell to open a new stream
repeatedly. Besides, many relay sendme cells are in the
outbound traffic. Tor defines two types of relay sendme
cells, namely, circuit-level sendme and stream-level
sendme cells. Both are used for congestion control.
When the OP receives 100 cells per circuit, it sends a
circuit-level sendme cell. Likewise, it sends a stream-
level sendme cell after receiving 50 cells. Since all
the relay cells are encrypted, we cannot identify the
specific positions of HTTP requests from a series of the
relay cells. In addition, sequences of cells generated by
accessing each website may contain different numbers
of HTTP requests located in distinct positions. As a
result, we should design a general scheme to delay these
HTTP requests. To solve these issues, we visit each
website on our monitoring list 60 times and analyze the
positions of HTTP requests by decrypting the traffic at

relay

->->->->  1st cell, Circ_id--3035614764, cmd-- 9.

<-<-<-<- Circ_id--3035614764, cmd-- 3.

1: 3035614764 |

->->->->   2nd cell, Circ_id--3533272601, cmd-- 9.

<-<-<-<- Circ_id--3533272601, cmd-- 3.

1: 3035614764 | 2: 3533272601 |

->->->->   3rd cell, Circ_id--3767398131, cmd-- 9.

<-<-<-<- Circ_id--3767398131, cmd-- 3.

1: 3035614764 | 2: 3533272601 | 3: 3767398131 |

->->->->   4th cell, Circ_id--2315862583, cmd-- 9.

<-<-<-<- Circ_id--2315862583, cmd-- 3.

1: 3035614764 | 2: 3533272601 | 3: 3767398131 | 4: 2315862583

->->->-> 5th cell, Circ_id--2315862583, cmd-- 9.

à Open a stream

->->->-> 6th cell, Circ_id--2315862583, cmd-- 9.

à Open a stream

<-<-<-<- Circ_id--2315862583, cmd-- 3.

->->->-> 7th cell, Circ_id--2315862583, cmd-- 9.

à The first HTTP request

<-<-<-<- Circ_id--2315862583, cmd-- 3.

Fig. 5 Cell transmission between entry and middle nodes.

the OP side.
We design two algorithms, one based on statistical

analysis and the other on objective function
optimization. In the first method, we compute the
probability that the i -th cell in the outbound cell
sequence contains an HTTP request. The results show
that the probability of the 7th cell containing an HTTP
request is 100%. The 8th cell has a probability of
40% and the 9th has a probability of 20%. For 60%
websites, at least 3 HTTP requests are sent in the first
19 cells. Therefore, we decide to delay the (i+1)-th,
i.e., 8th, 9th, 10th, and 20th cells.

We also design the cell-delay position decision
algorithm by optimizing the objective function as
shown in Algorithm 1. In this algorithm, we define
the concept of conflict in an instance of a monitored
website as the absolute difference between the mode
and the number of requests before a potential cell-delay
position. We compute the number of conflicts in each
potential cell-delay position and find corresponding
positions in terms of top-T minimum values of the
conflicts, where T represents the number of cell-
delay positions. For the w-th website, we denote
the number of HTTP requests before the p-th cell
in the i -th instance as rp;w;i and we can have a set
Rp;w Dfrp;w;1; : : : ; rp;w;ng. We denote M.Rp;w/ as

Algorithm 1 Cell-Delay Position Decision Algorithm
Input:

(a) P , list of all positions;
(b) m list , list of monitored websites;
(c) K, total number of monitored websites;
(d) instancesŒ1; : : : ; K�, instances collected for all websites
in m list ;
(e) n, number of instances collected for each website;
(f) T , number of delay positions to select.

Output: T delay positions.
1: for each position p in P do
2: for each website w in m list do
3: for each instance i in instancesŒw� do
4: Calculate rp;w;i

5: end for
6: Calculate the mode M.Rp;w/ of Rp;w

7: Calculate the conflicts for w at position p:
Sp;w D

PN
iD1 jrp;w;i �M.Rp;w/j

8: end for
9: Count conflicts for all websites at position p:

Sp D
PK

wD1 Sp;w

10: end for
11: Select T positions corresponding to top-T minimum values

in fSpg
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the mode of HTTP requests in Rp;w . Then, we can
compute the conflicts of the w-th website by

Sp;w D

NX
iD1

jrp;w;i �M.Rp;w/j (1)

Finally, we calculate the sum of Sp;w for all K

websites as the number of conflicts in the delay position
of the p-th cell by

Sp D

KX
wD1

Sp;w (2)

To obtain the cell-delay positions of top-T minimum
conflicts, we use the objective function of the delay
positions decision algorithm by

Get -T -argminp2P .Sp/ (3)

Figure 6 shows an example of five instances of the
w-th website. The square represents an HTTP request
while the circle represents a relay control cell. The x

axis indicates the positions of cells in the cell sequence,
while the y axis is the instance number. The vertical
dash line indicates that we delay the first cell after the
line, i.e., the 6th cell. Thus, the conflict of the w-th
website is 2 in terms of Eq. (1).

We combine the results from two algorithms and
select the proper numbers of cell-delay positions using
our empirical experiments presented in Section 5.

4.4.2 Delaying HTTP requests
When the cell-delay positions are determined, we
modify the code of the Tor cell transmission mechanism
to delay the cells. On the one hand, we have to find the
right cells and delay them before writing them to the
outgoing buffers. On the other hand, the data read and
write events should be scheduled normally.

By analyzing the source code of Tor, we obtain
the workflow of Tor data processing as shown in
Fig. 7. First, data are received by the network
adapter and processed by TCP and TLS stacks. When
data are sent to Tor, Tor schedules a read event

Fig. 6 Example of five instances of website w.

Fig. 7 Tor data processing.

to call the conn read callback function to load the
data to the connection buffer. Then, Tor processes
the data in several stages, specifically, sending
cells to different modules in terms of the CMD
field, decrypting cells in the circuit receive relay cell
function, and delivering cells to different circuit
queues in terms of the circuit number. Once the
data are processed, a write event is scheduled to
write the data to the connection buffer of the next
hop using the channel tls write packed cell method
function. Finally, data are delivered to the openssl in
chunks and sent to the network through the TCP/IP
protocol stack.

To delay HTTP requests, we design a delay
scheduling algorithm as shown in Algorithm 2. We
count the number of outbound cells and mark the cell
if we need to delay it. Then we keep this cell and the
following cells in a delay queue. To control the delay
time, we set a timer for each marked cell. Once the
time is up, we send the corresponding cell and following
cells until we count the next delay cell position. Then,
the new timer is activated again.

4.5 Step 3: Recording Tor cells

We capture and record all relay cells between
the entry node and middle node. To achieve
this goal, we capture the inbound and outbound
cells in the circuit receive relay cell function and
channel tls write packed cell method function,
respectively. All captured relay and relay early
cells are recorded in a trace file in chronological order.
As all cells are of equal length, we replace data volume
with the number of cells in the feature extraction. Then
we use the positive and negative signs to represent
inbound and outbound cells, respectively.
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Algorithm 2 Delay Scheduling Algorithm in Tor
Input: cel l queue, the pending Tor cell queue of fcel l; segg,

seg is true if the Tor cell needs to be delayed.
Output: delayed cel l queue.

1: for every cell in cel l queue do
2: if t imer f lag is true then
3: fThe timer is activated nowg
4: Put the cel l into linklist of the delay cell sequence
5: else
6: if seg of the cel l is false then
7: Send the cel l directly
8: else
9: Put the cel l into linklist

10: t imer f lag = true
11: end if
12: end if
13: end for
14: Timer function:
15: if timer is up then
16: Send the first cel l in linklist directly
17: while linklist is not null do
18: Get the next cel l in linklist

19: if seg of the cel l is false then
20: Send the cel l directly
21: else
22: Start a new timer
23: break
24: end if
25: end while
26: if linklist is null then
27: t imer f lag = false
28: end if
29: end if

4.6 Step 4: Feature extraction

On the basis of previous work[11], we remove redundant
features and extract various features to generate a
fingerprint, including the total bandwidth, per-direction
bandwidth and corresponding proportion, outbound
cells’ positions in the cell sequence, concentrations of
inbound cells, and statistical characteristics of bursts.
For the outbound cells, we record only the first 300
cells’ positions. If the outbound cells of a website are
less than 300 cells, we add 0 to fill empty positions.
With regard to the bursts, we record the first 50 burst
volumes and calculate the maximum, minimum, and
mean values. We also count the numbers of bursts
whose volumes exceed 5, 10, and 15, respectively.

4.7 Step 5: Website classification

Various factors can affect the classification accuracy of
a classifier, such as the size and distribution of a dataset,
and the dimension of the features. For the same dataset,

distinct classifiers may exhibit varying performance.
Therefore, classifier selection is an important step
in the active website fingerprinting attack. As one
of the most commonly used classifiers, SVMs have
good generalization properties and can avoid overfitting
on a small dataset. The k-NN algorithm improved
by Wang et al.[11] exhibited excellent performance in
their experiments. The researchers randomly assigned
a value to each weight in initialization, and then
iteratively adjusted weights to compute the distance
between any two feature vectors.

In this paper, we apply the two classifiers in a closed-
world scenario and compare their prediction ability.
Finally, we choose the better classifier and evaluate
its practical feasibility in an open-world scenario.
In the following experiments, we use the LIBSVM
library[24] to implement SVM while the k-NN algorithm
is provided by Ref. [11].

5 Evaluation

In this section, we deploy a private Tor network
in PlanetLab[25] and implement the proposed
active website fingerprinting attack to evaluate its
effectiveness and efficiency.

5.1 Experimental setup

To set up a private Tor network in PlanetLab, we deploy
three directory servers, one bridge, and seven ORs.
The experimental setup is shown in Fig. 8. We install
the Tor software, version 0.2.5.10 on Fedora release
8 with kernel 2.6.32-20 for all PlanetLab nodes. The
OP is installed on Ubuntu 14.04.4 and a script is used
to automatically run Mozilla Firefox 47.0 to access
the monitored websites. Similar to previous studies,
the Firefox cache is switched off. We also disable
browser features that may generate noise traffic, such as
automatic updates and speculative pre-connections. We
use Obfsproxy[26] to obfuscate traffic between the OP
and bridge. We modify the OP and bridge configuration
in the Tor configuration file, as shown in Table 1, to let

Directory 

Server

OP

Bridge

Tor Network

Application 

Server

OR

Fig. 8 Experimental setup.
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Table 1 OP and bridge configuration file.

OP:
ClientTransportPlugin obfs3 exec /. . . /obfsproxy managed
UseBridges 1
Bridge obfs3 192.91.235.229:44444
Bridge:
BridgeRelay 1
ExtORPort auto
PublishServerDescriptor 0
ServerTransportPlugin obfs3 exec /.../obfsproxy managed
ServerTransportListenAddr obfs3 0.0.0.0:44444

the OP select our bridge as the entry node of circuits.
Furthermore, we also modify the bridge’s Tor code to
delay and record cells, as presented in Section 4.

5.2 Data collection

Considering the popularity of websites, we select
the 100 most popular websites from Alexa
(http://www.alexa.com). However, some websites,
such as Google, have multiple distinct country domains
in different locations and occur many times on the
list of top 100 sites. For these websites, we keep only
the most popular one. To conduct experiments in the
closed-world and open-world scenarios, we generate
two datasets called Data-closed and Data-open. The
Data-closed dataset consists of six cell-delay position
schemes and every scheme contains the top 100
websites with 60 instances each. The Data-open dataset
contains 1 instance each of 2000 non-monitored sites
that are randomly selected from top 10 000 sites on
Alexa. For the closed-world scenario, we select 40
instances each for training and 20 instances each for
testing. To compare our method with previous passive
attacks, we collect two additional datasets called
Data-passive and Data-passive-link using the same
monitor list. Cells are recorded in the Data-passive
dataset at the bridge side while TCP traffic between OP
and bridge is recorded in the Data-passive-link dataset.
The information about four datasets is shown in Table
2.

5.3 Experimental results

We perform experiments in the closed-worldscenario.

Table 2 Collected datasets.

Name Content Size Training Testing
Data-closed Cell 100�60�6 100�40�6 100�20�6
Data-open Cell 2000�1 0 2000�1
Data-passive Cell 100�60 100�40 100�20
Data-passive-link Packet 100�60 100�40 100�20

We believe that compromising the entry (bridge) node
can bring more useful information to the attacker and
increase the detection rate. To prove this assupmtion,
we implement the passive website fingerprint attack
on Data-passive and Data-passive-link datasets. We
extract the same features mentioned in Section 4.6 and
use the SVM classifier to predict the real destinations.
For the Data-passive-link dataset, we convert packets
into cells by rounding packet lengths to the closest
multiple of 586 (512 bytes of a Tor cell and 74 bytes of a
TLS header). The results are shown in Table 3. We can
observe that the accuracy is increased by 0.1501 when
the attacker compromises the bridge.

The previous work demonstrates that the more
requests we delay, the higher accuracy we obtain[13].
However, multiple delays increase page loading time
and seriously impact the user experience. According
to our empirical experiments, the number of cell-delay
positions is set to 4 or 5. Then, we execute two
algorithms in Section 4 and obtain four delay schemes
of different cell-delay positions, as shown in Table 4.
The delay time is 500 ms except for the passive scheme,
which is used as a baseline in this experiment.

Figure 9 illustrates the detection rates of four delay
schemes. We use the SVM and k-NN classifiers on
each scheme. For the k-NN algorithm, we vary the
value of k from 1 to 10 on all schemes and the results
are shown in Table 5. When k is 1, the classifier
exhibits the best performance. Then, we set k to 1 in the
following experiments. As we can observe in Fig. 9, by
using the same classifier, actively delaying requests can
improve the detection rate of the attack. The Active3
scheme achieves the highest accuracy regardless of
what classifier is used. Therefore, in the following

Table 3 Accuracy of passive website fingerprinting attack
on two datasets.

Scheme
Monitoring

location
Dataset Classifier Accuracy

Passive1
Network

layer
Data-

passive-link
SVM 0.7360

Passive2 Bridge Data-passive SVM 0.8701

Table 4 Delay schemes of different delay positions.

Scheme Delay positions Delay time (ms)
Passive1 None None
Active1 8, 9, 10, 15, 20 500
Active2 8, 9, 10, 20 500
Active3 8, 9, 10, 17, 27 500
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Table 5 Detection rates of all schemes with different values of k.

Scheme k D 1 k D 2 k D 3 k D 4 k D 5 k D 6 k D 7 k D 8 k D 9 k D 10

Passive1 0.8595 0.7590 0.6865 0.6215 0.5635 0.5135 0.4690 0.4230 0.3820 0.3580
Active1 0.9626 0.9429 0.9237 0.9066 0.8869 0.8631 0.8439 0.8222 0.8015 0.7828
Active2 0.9705 0.9450 0.9297 0.9144 0.9016 0.8822 0.8629 0.8486 0.8328 0.8184
Active3 0.9745 0.9505 0.9295 0.9075 0.8940 0.8605 0.8445 0.8170 0.8010 0.7845
Active4 0.9602 0.9454 0.9255 0.9051 0.8903 0.8796 0.8612 0.8510 0.8362 0.8010
Active5 0.9864 0.9722 0.9626 0.9545 0.9419 0.9222 0.9010 0.8833 0.8742 0.8586
Active6 0.9737 0.9556 0.9394 0.9202 0.9015 0.8808 0.8621 0.8298 0.7793 0.7455

Fig. 9 Detection rates of four delay schemes.

experiments, we use cell-delay positions of the Active3
scheme.

Table 6 shows the different delay times of four
schemes and the corresponding detection rates are
shown in Fig. 10. The four schemes have the same delay
positions, but the delay time is increased from 300 ms
to 1000 ms. We can observe that the detection rates rise
by increasing the delay time from 300 ms to 700 ms.
However, when the delay time is increased to 1000 ms,
the detection rates are slightly decreased. We deduce
that excessive delay time may lead to close of the
TCP streams and data retransmission, which can cause
the accuracy to decrease. Therefore, the longer delay
time is not positively related to the higher accuracy. In
addition, when using the k-NN classifier on the Active5
scheme, we can obtain the highest accuracy of 0.9864.
Thus, we select the k-NN algorithm as the classifier in
our active attack.

To evaluate the practical feasibility of our active

Table 6 Delay schemes of different delay times.

Scheme Delay position Delay time (ms)
Active3 8, 9, 10, 17, 27 500
Active4 8, 9, 10, 17, 27 300
Active5 8, 9, 10, 17, 27 700
Active6 8, 9, 10, 17, 27 1000
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Fig. 10 Detection rates of different delay times.

attack, we also perform experiments in the open-world
scenario. Figure 11 illustrates the true and false positive
rates in terms of delay time by using the k-NN classifier.
Although the Active5 is still the optimal scheme, the
False Positive Rate (FPR) remains high. Therefore, we
change the value of k to decrease the false positive rate.

Figure 12 illustrates the results of FPR vs. True
Positive Rate (TPR) while varying the number of k.
When k is set to 5, we can obtain a 0.9096 true positive
rate with a false positive rate of 0.039. Although
varying k decreases the true positive rate, the false
positive rate now is in an acceptable range in practical
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Fig. 11 True and false positive rates in terms of delay time.
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Fig. 12 True positive rates and false positive rates with
different values of k.

scenarios. In addition, the corresponding accuracy in
the closed-world scenario decreases to 0.9419.

6 Conclusion

Numberous of experiments demonstrate the
effectiveness of the website fingerprinting attacks.
However, in previous passive attacks, multiple HTTP
web objects mixed in the encrypted traffic make
extracted features obscure and unstable. In this paper,
we proposed a novel active website fingerprinting
attack performed at a controlled entry node. By actively
delaying HTTP requests, we further improved the
accuracy. To obtain a general scheme to select several
appropriate cell-delay positions, we designed two
algorithms based on statistical analysis and objective
function optimization. Then, we compared the
prediction ability of two classifiers in the closed-world
scenario. By using k-NN, we could obtain the highest
accuracy of 0.9864. We also performed experiments
in the open-world scenario. When k is 5, we achieved
a true positive rate of 0.9096 and a false positive rate
of 0.039. In our future work, we will investigate the
practical feasibility of our attack in the wild, such as in
the task of filtering background traffic.
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